Skeletal reaction models for methane combustion

被引:4
|
作者
Liu, Yinmin [1 ]
Babaee, Hessam [1 ]
Givi, Peyman [1 ]
Chelliah, Harsha K. [2 ]
Livescu, Daniel [3 ]
Nouri, Arash G. [1 ]
机构
[1] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
[2] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87544 USA
基金
美国国家科学基金会;
关键词
Methane-air combustion; Skeletal model; Local sensitivity analysis; Forced optimally time dependent modes; High-pressure; PRINCIPAL COMPONENT ANALYSIS; COMPUTATIONAL SINGULAR PERTURBATION; SENSITIVITY-ANALYSIS; REDUCTION; TIME; PROPAGATION; MECHANISM; IGNITION; OXIDATION; ETHYLENE;
D O I
10.1016/j.fuel.2023.129581
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A local-sensitivity-analysis technique is employed to generate new skeletal reaction models for methane combustion from the foundational fuel chemistry model (FFCM-1). The sensitivities of the thermo-chemical variables with respect to the reaction rates are computed via the forced-optimally time dependent (f-OTD) methodology. In this methodology, the large sensitivity matrix containing all local sensitivities is modeled as a product of two low-rank time-dependent matrices. The evolution equations of these matrices are derived from the governing equations of the system. The modeled sensitivities are computed for the auto-ignition of methane at atmospheric and high pressures with different sets of initial temperatures, and equivalence ratios. These sensitivities are then analyzed to rank the most important (sensitive) species. A series of skeletal models with different number of species and levels of accuracy in reproducing the FFCM-1 results are suggested. The performances of the generated models are compared against FFCM-1 in predicting the ignition delay, the laminar flame speed, and the flame extinction. The results of this comparative assessment suggest the skeletal models with 24 and more species generate the FFCM-1 results with an excellent accuracy.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A FOUR COMPONENT SKELETAL MODEL FOR THE ANALYSIS OF JET FUEL SURROGATE COMBUSTION
    Akih-Kumgeh, Ben
    Bergthorson, Jeffrey M.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 1A, 2013,
  • [32] Quantitative analyses of NO formations from different reaction pathways in methane-air combustion at various pressures and temperatures
    Xu, Jianguo
    Wang, Danyang
    Meng, Hua
    FUEL, 2023, 337
  • [33] A simplified description of simulation of methane-air combustion with Chemkin PRO software
    Kedzior, Renata
    Grzesiak, Dawid
    Cybulska, Pola
    Malinowski, Rafal
    Falewicz, Piotr
    Glowinski, Jozef
    PRZEMYSL CHEMICZNY, 2015, 94 (10): : 1858 - 1860
  • [34] Characteristics of ethylene and methane combustion in a range of high temperature and low oxygen environments
    Shaw, Ian J.
    Evans, Michael J.
    Chin, Rey
    Medwell, Paul R.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2023, 147
  • [35] Low temperature combustion of methane/alkenes mixtures
    Pio, Gianmaria
    Ricca, Antonio
    Palma, Vincenzo
    Salzano, Ernesto
    FUEL, 2019, 254
  • [36] Experimental Design for Discrimination of Chemical Kinetic Models for Oxy-Methane Combustion
    Cai, Liming
    Kruse, Stephan
    Felsmann, Daniel
    Thies, Christoph
    Yalamanchi, Kiran K.
    Pitsch, Heinz
    ENERGY & FUELS, 2017, 31 (05) : 5533 - 5542
  • [37] Ammonia/Methane combustion: Stability and NOx emissions
    Ariemma, Giovanni Battista
    Sorrentino, Giancarlo
    Ragucci, Raffaele
    de Joannon, Mara
    Sabia, Pino
    COMBUSTION AND FLAME, 2022, 241
  • [38] Kinetic Models of Methane-Hydrogen Mixture Combustion: Brief Review and Validation
    Semenikhin, A. S.
    Matveev, S. S.
    Chechet, I. V.
    Matveev, S. G.
    Idrisov, D. V.
    Gurakov, N. I.
    Radin, D. V.
    Novichkova, S. S.
    Fokin, N. I.
    Simin, N. O.
    Ivanovskii, A. A.
    Tarasov, D. S.
    THERMAL ENGINEERING, 2022, 69 (10) : 792 - 801
  • [39] Validation and analysis of detailed kinetic models for ethylene combustion
    Xu, Chaoqi
    Konnov, Alexander A.
    ENERGY, 2012, 43 (01) : 19 - 29
  • [40] Small Skeletal Kinetic Mechanism for Kerosene Combustion
    Zettervall, N.
    Fureby, C.
    Nilsson, E. J. K.
    ENERGY & FUELS, 2016, 30 (11) : 9801 - 9813