General rigid bead-rod theory for steady-shear flow

被引:11
|
作者
Giacomin, A. J. [1 ]
Coombs, S. J. [2 ]
Pak, Myong Chol [3 ]
Kim, Kwang-Il [3 ]
机构
[1] Univ Nevada, Mech Engn Dept, Reno, NV 89557 USA
[2] Queens Univ, Chem Engn Dept, Polymers Res Grp, Kingston, ON K7L 3N6, Canada
[3] Kim Il Sung Univ, Dept Phys, Taesong Dist, Pyongyang 999093, North Korea
基金
加拿大自然科学与工程研究理事会;
关键词
MACROMOLECULAR SOLUTIONS; DUMBBELL SUSPENSIONS; KINETIC-THEORY; RHEOLOGY; MODELS;
D O I
10.1063/5.0161925
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
General rigid bead-rod theory yields uniquely the relation between macromolecular architecture and complex viscosity. For this, it relies on the analytical solution of the general diffusion equation for small-amplitude oscillatory shear flow of Bird et al. [Dynamics of Polymeric Liquids, 2nd ed. (Wiley, New York, 1987), Vols. 1-2]. Unfortunately, this general diffusion equation has yet to be solved for any other flow field. In this paper, we do so for steady-shear material functions, namely, viscosity and first normal stress coefficient. We, thus, explain the non-Newtonian behaviors of macromolecular suspensions of any axisymmetric design in steady-shear flow.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] The rigid-rod model for nematic polymers: An analysis of the shear flow problem
    Faraoni, V
    Grosso, M
    Crescitelli, S
    Maffettone, PL
    JOURNAL OF RHEOLOGY, 1999, 43 (03) : 829 - 843
  • [32] PRETRANSITIONAL ORIENTATIONAL ORDERING OF RIGID-ROD POLYMERS IN SHEAR-FLOW
    WANG, CH
    VUGMEISTER, BE
    OUYANG, HD
    PHYSICAL REVIEW E, 1993, 48 (06): : 4455 - 4459
  • [33] SHEAR-FLOW INSTABILITY IN NEMATIC LIQUIDS - THEORY STEADY SIMPLE SHEAR FLOWS
    MANNEVILLE, P
    DUBOISVIOLETTE, E
    JOURNAL DE PHYSIQUE, 1976, 37 (04): : 285 - 296
  • [34] Rigid particles in simple shear flow: Is their preferred orientation periodic or steady-state?
    Ildefonse, B
    Arbaret, L
    Diot, H
    GRANITE: FROM SEGREGATION OF MELT TO EMPLACEMENT FABRICS, 1997, 8 : 177 - 185
  • [35] Exact coefficients for rigid dumbbell suspensions for steady shear flow material function expansions
    Piette, Jourdain H.
    Jbara, Layal M.
    Saengow, C.
    Giacomin, A. J.
    PHYSICS OF FLUIDS, 2019, 31 (02)
  • [36] Steady shear flow of magnetic fiber suspensions: Theory and comparison with experiments
    Gomez-Ramirez, A.
    Kuzhir, P.
    Lopez-Lopez, M. T.
    Bossis, G.
    Meunier, A.
    Duran, J. D. G.
    JOURNAL OF RHEOLOGY, 2011, 55 (01) : 43 - 67
  • [37] THEORY OF FLUCTUATIONS IN COLLOIDAL SUSPENSIONS UNDERGOING STEADY SHEAR-FLOW
    RONIS, D
    PHYSICAL REVIEW A, 1984, 29 (03): : 1453 - 1460
  • [38] A mode coupling theory for Brownian particles in homogeneous steady shear flow
    Fuchs, M.
    Cates, M. E.
    JOURNAL OF RHEOLOGY, 2009, 53 (04) : 957 - 1000
  • [40] Parallel superposition of small-amplitude oscillatory shear flow upon steady shear flow from rotarance theory
    Pak, Myong Chol
    Giacomin, A. J.
    PHYSICS OF FLUIDS, 2024, 36 (08)