General rigid bead-rod theory for steady-shear flow

被引:11
|
作者
Giacomin, A. J. [1 ]
Coombs, S. J. [2 ]
Pak, Myong Chol [3 ]
Kim, Kwang-Il [3 ]
机构
[1] Univ Nevada, Mech Engn Dept, Reno, NV 89557 USA
[2] Queens Univ, Chem Engn Dept, Polymers Res Grp, Kingston, ON K7L 3N6, Canada
[3] Kim Il Sung Univ, Dept Phys, Taesong Dist, Pyongyang 999093, North Korea
基金
加拿大自然科学与工程研究理事会;
关键词
MACROMOLECULAR SOLUTIONS; DUMBBELL SUSPENSIONS; KINETIC-THEORY; RHEOLOGY; MODELS;
D O I
10.1063/5.0161925
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
General rigid bead-rod theory yields uniquely the relation between macromolecular architecture and complex viscosity. For this, it relies on the analytical solution of the general diffusion equation for small-amplitude oscillatory shear flow of Bird et al. [Dynamics of Polymeric Liquids, 2nd ed. (Wiley, New York, 1987), Vols. 1-2]. Unfortunately, this general diffusion equation has yet to be solved for any other flow field. In this paper, we do so for steady-shear material functions, namely, viscosity and first normal stress coefficient. We, thus, explain the non-Newtonian behaviors of macromolecular suspensions of any axisymmetric design in steady-shear flow.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Multiscale flow simulations of dilute polymeric solutions with bead-rod chains using Brownian configuration fields
    Meier, Andreas
    Baensch, Eberhard
    Frank, Florian
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 487
  • [22] Superadiabatic dynamical density functional theory for colloidal suspensions under homogeneous steady-shear
    Tschopp, S. M.
    Brader, J. M.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (21):
  • [23] Effects of excluded volume and hydrodynamic interactions on the behavior of isolated bead-rod polymer chains in shearing flow
    Dalal, Indranil Saha
    Hsieh, Chih-Chen
    Albaugh, Alex
    Larson, Ronald G.
    AICHE JOURNAL, 2014, 60 (04) : 1400 - 1412
  • [24] Brownian dynamics simulation of linear polymers under elongational flow: Bead-rod model with hydrodynamic interactions
    Neelov, IM
    Adolf, DB
    Lyulin, AV
    Davies, GR
    JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (08): : 4030 - 4041
  • [25] Dynamic simulation of freely-draining, flexible bead-rod chains: Start-up of extensional and shear flow (vol 76, pg 43, 1998)
    Doyle, PS
    Shaqfeh, ESG
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2000, 92 (2-3) : 275 - 278
  • [26] Phase separation of rigid-rod suspensions in shear flow
    Olmsted, PD
    Lu, CYD
    PHYSICAL REVIEW E, 1999, 60 (04): : 4397 - 4415
  • [27] Steady-shear flow of semidilute guar gum solutions with sucrose, glucose and sodium chloride at different temperatures
    Chenlo, Francisco
    Moreira, Ramon
    Silva, Claudia
    JOURNAL OF FOOD ENGINEERING, 2011, 107 (02) : 234 - 240
  • [28] Hydrodynamic interaction for rigid dumbbell suspensions in steady shear flow
    Piette, Jourdain H.
    Saengow, Chaimongkol
    Giacomin, A. Jeffrey
    PHYSICS OF FLUIDS, 2019, 31 (05)
  • [29] Dynamics of individual molecules of linear polyethylene liquids under shear: Atomistic simulation and comparison with a free-draining bead-rod chain
    Kim, J. M.
    Edwards, B. J.
    Keffer, D. J.
    Khomami, B.
    JOURNAL OF RHEOLOGY, 2010, 54 (02) : 283 - 310
  • [30] Brownian dynamics simulations of bead-rod-chain in simple shear flow and elongational flow
    Liu, S
    Ashok, B
    Muthukumar, M
    POLYMER, 2004, 45 (04) : 1383 - 1389