RGB-guided hyperspectral image super-resolution with deep progressive learning

被引:1
作者
Zhang, Tao [1 ]
Fu, Ying [1 ]
Huang, Liwei [2 ]
Li, Siyuan [3 ]
You, Shaodi [4 ]
Yan, Chenggang [5 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing, Peoples R China
[2] Beijing Inst Remote Sensing, Satellite Informat Intelligent Proc & Applicat Res, Beijing, Peoples R China
[3] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol, Xian, Peoples R China
[4] Univ Amsterdam, Inst Informat, Amsterdam, Netherlands
[5] Hangzhou Dianzi Univ, Sch Commun Engn, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
computer vision; deep neural networks; image processing; image resolution; unsupervised learning; CLASSIFICATION; RESOLUTION; SYSTEM;
D O I
10.1049/cit2.12256
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to hardware limitations, existing hyperspectral (HS) camera often suffer from low spatial/temporal resolution. Recently, it has been prevalent to super-resolve a low resolution (LR) HS image into a high resolution (HR) HS image with a HR RGB (or multispectral) image guidance. Previous approaches for this guided super-resolution task often model the intrinsic characteristic of the desired HR HS image using hand-crafted priors. Recently, researchers pay more attention to deep learning methods with direct supervised or unsupervised learning, which exploit deep prior only from training dataset or testing data. In this article, an efficient convolutional neural network-based method is presented to progressively super-resolve HS image with RGB image guidance. Specifically, a progressive HS image super-resolution network is proposed, which progressively super-resolve the LR HS image with pixel shuffled HR RGB image guidance. Then, the super-resolution network is progressively trained with supervised pre-training and unsupervised adaption, where supervised pre-training learns the general prior on training data and unsupervised adaptation generalises the general prior to specific prior for variant testing scenes. The proposed method can effectively exploit prior from training dataset and testing HS and RGB images with spectral-spatial constraint. It has a good generalisation capability, especially for blind HS image super-resolution. Comprehensive experimental results show that the proposed deep progressive learning method outperforms the existing state-of-the-art methods for HS image super-resolution in non-blind and blind cases.
引用
收藏
页码:679 / 694
页数:16
相关论文
共 67 条
  • [1] Hierarchical Beta Process with Gaussian Process Prior for Hyperspectral Image Super Resolution
    Akhtar, Naveed
    Shafait, Faisal
    Mian, Ajmal
    [J]. COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 : 103 - 120
  • [2] Akhtar N, 2015, PROC CVPR IEEE, P3631, DOI 10.1109/CVPR.2015.7298986
  • [3] Sparse Spatio-spectral Representation for Hyperspectral Image Super-resolution
    Akhtar, Naveed
    Shafait, Faisal
    Mian, Ajmal
    [J]. COMPUTER VISION - ECCV 2014, PT VII, 2014, 8695 : 63 - 78
  • [4] Sparse Recovery of Hyperspectral Signal from Natural RGB Images
    Arad, Boaz
    Ben-Shahar, Ohad
    [J]. COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 : 19 - 34
  • [5] BASEDOW RW, 1995, P SOC PHOTO-OPT INS, V2480, P258, DOI 10.1117/12.210881
  • [6] Borengasser M., 2007, Hyperspectral Remote Sensing
  • [7] Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network
    Cao, Xiangyong
    Zhou, Feng
    Xu, Lin
    Meng, Deyu
    Xu, Zongben
    Paisley, John
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (05) : 2354 - 2367
  • [8] Chakrabarti A, 2011, PROC CVPR IEEE, P193, DOI 10.1109/CVPR.2011.5995660
  • [9] Regularizing Hyperspectral and Multispectral Image Fusion by CNN Denoiser
    Dian, Renwei
    Li, Shutao
    Kang, Xudong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (03) : 1124 - 1135
  • [10] Learning a Low Tensor-Train Rank Representation for Hyperspectral Image Super-Resolution
    Dian, Renwei
    Li, Shutao
    Fang, Leyuan
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (09) : 2672 - 2683