Deep learning radiomics-based preoperative prediction of recurrence in chronic rhinosinusitis

被引:12
作者
He, Shaojuan [1 ,2 ]
Chen, Wei [3 ]
Li, Anning [2 ]
Xie, Xinyu [1 ]
Liu, Fangying [1 ]
Ma, Xinyi [1 ]
Feng, Xin [1 ]
Wang, Xuehai [4 ]
Li, Xuezhong [1 ]
机构
[1] Shandong Univ, Qilu Hosp, Dept Otorhinolaryngol, NHC Key Lab Otorhinolaryngol, Jinan, Peoples R China
[2] Shandong Univ, Qilu Hosp, Dept Radiol, Jinan, Peoples R China
[3] Shandong Univ, Sch & Hosp Stomatol, Cheeloo Coll Med, Jinan, Peoples R China
[4] Weihai Municipal Hosp, Dept Otorhinolaryngol, Weihai, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
ENDOSCOPIC SINUS SURGERY; POLYP RECURRENCE; ALGORITHM; ASTHMA;
D O I
10.1016/j.isci.2023.106527
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chronic rhinosinusitis (CRS) is characterized by poor prognosis and propensity for recurrence even after surgery. Identification of those CRS patients with high risk of relapse preoperatively will contribute to personalized treatment recommendations. In this paper, we proposed a multi-task deep learning network for sinus segmentation and CRS recurrence prediction simultaneously to develop and validate a deep learning radiomics-based nomogram for preoperatively predicting recurrence in CRS patients who needed surgical treatment. 265 paranasal sinuses computed tomography (CT) images of CRS from two independent medical centers were analyzed to build and test models. The sinus segmentation model achieved good segmentation results. Furthermore, the nomogram combining a deep learning signature and clinical factors also showed excellent recurrence prediction ability for CRS. Our study not only facilitates a technique for sinus segmentation but also provides a noninvasive method for preoperatively predicting recurrence in patients with CRS.
引用
收藏
页数:15
相关论文
共 47 条
[1]   From Handcrafted to Deep-Learning-Based Cancer Radiomics Challenges and opportunities [J].
Afshar, Parnian ;
Mohammadi, Arash ;
Plataniotis, Konstantinos N. ;
Oikonomou, Anastasia ;
Benali, Habib .
IEEE SIGNAL PROCESSING MAGAZINE, 2019, 36 (04) :132-160
[2]   Nomograms in oncology: more than meets the eye [J].
Balachandran, Vinod P. ;
Gonen, Mithat ;
Smith, J. Joshua ;
DeMatteo, Ronald P. .
LANCET ONCOLOGY, 2015, 16 (04) :E173-E180
[3]   Analysis of Comorbidities and Objective Parameters in Refractory Chronic Rhinosinusitis [J].
Batra, Pete S. ;
Tong, Liyue ;
Citardi, Martin J. .
LARYNGOSCOPE, 2013, 123 :S1-S11
[4]  
Bruns N, 2019, UNFALLCHIRURG, V122, P662, DOI 10.1007/s00113-019-0654-4
[5]  
Chen W, 2018, INT J BIOMED IMAGING, V2018, DOI [10.1155/2018/2512037, 10.1109/TSC.2018.2803826]
[6]   A Fully Automated Multimodal MRI-Based Multi-Task Learning for Glioma Segmentation and IDH Genotyping [J].
Cheng, Jianhong ;
Liu, Jin ;
Kuang, Hulin ;
Wang, Jianxin .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (06) :1520-1532
[7]   Automated classification of osteomeatal complex inflammation on computed tomography using convolutional neural networks [J].
Chowdhury, Naweed I. ;
Smith, Timothy L. ;
Chandra, Rakesh K. ;
Turner, Justin H. .
INTERNATIONAL FORUM OF ALLERGY & RHINOLOGY, 2019, 9 (01) :46-52
[8]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[9]   Prevalence of Polyp Recurrence After Endoscopic Sinus Surgery for Chronic Rhinosinusitis With Nasal Polyposis [J].
DeConde, Adam S. ;
Mace, Jess C. ;
Levy, Joshua M. ;
Rudmik, Luke ;
Alt, Jeremiah A. ;
Smith, Timothy L. .
LARYNGOSCOPE, 2017, 127 (03) :550-555
[10]   Differential Expression of Extracellular Matrix Components in Nasal Polyp Endotypes [J].
Feng, Xin ;
Payne, Spencer C. ;
Borish, Larry ;
Steinke, John W. .
AMERICAN JOURNAL OF RHINOLOGY & ALLERGY, 2019, 33 (06) :665-670