Development of machine learning models aiming at knee osteoarthritis diagnosing: an MRI radiomics analysis

被引:11
作者
Cui, Tingrun [1 ,3 ]
Liu, Ruilong [2 ]
Jing, Yang [4 ]
Fu, Jun [3 ]
Chen, Jiying [3 ]
机构
[1] Med Sch Chinese PLA, Beijing, Peoples R China
[2] Jining 2 Peoples Hosp, Dept Bone & Joint Surg, Jining, Shandong, Peoples R China
[3] Chinese Peoples Liberat Army Gen Hosp, Dept Orthopaed, Med Ctr 1, Beijing, Peoples R China
[4] Huiying Med Technol Co Ltd, Beijing, Peoples R China
关键词
KOA diagnosis; Magnetic resonance imaging (MRI); Machine learning; Radiomics; SEVERITY;
D O I
10.1186/s13018-023-03837-y
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
BackgroundTo develop and assess the performance of machine learning (ML) models based on magnetic resonance imaging (MRI) radiomics analysis for knee osteoarthritis (KOA) diagnosis.MethodsThis retrospective study analysed 148 consecutive patients (72 with KOA and 76 without) with available MRI image data, where radiomics features in cartilage portions were extracted and then filtered. Intraclass correlation coefficient (ICC) was calculated to quantify the reproducibility of features, and a threshold of 0.8 was set. The training and validation cohorts consisted of 117 and 31 cases, respectively. Least absolute shrinkage and selection operator (LASSO) regression method was employed for feature selection. The ML classifiers were logistic regression (LR), K-nearest neighbour (KNN) and support vector machine (SVM). In each algorithm, ten models derived from all available planes of three joint compartments and their various combinations were, respectively, constructed for comparative analysis. The performance of classifiers was mainly evaluated and compared by receiver operating characteristic (ROC) analysis.ResultsAll models achieved satisfying performances, especially the Final model, where accuracy and area under ROC curve (AUC) of LR classifier were 0.968, 0.983 (0.957-1.000, 95% CI) in the validation cohort, and 0.940, 0.984 (0.969-0.995, 95% CI) in the training cohort, respectively.ConclusionThe MRI radiomics analysis represented promising performance in noninvasive and preoperative KOA diagnosis, especially when considering all available planes of all three compartments of knee joints.
引用
收藏
页数:13
相关论文
共 44 条
[31]   What Comes First? Multitissue Involvement Leading to Radiographic Osteoarthritis: Magnetic Resonance Imaging-Based Trajectory Analysis Over Four Years in the Osteoarthritis Initiative [J].
Roemer, Frank W. ;
Kwoh, C. Kent ;
Hannon, Michael J. ;
Hunter, David J. ;
Eckstein, Felix ;
Fujii, Tomoko ;
Boudreau, Robert M. ;
Guermazi, Ali .
ARTHRITIS & RHEUMATOLOGY, 2015, 67 (08) :2085-2096
[32]   The role of imaging in osteoarthritis [J].
Roemer, Frank W. ;
Eckstein, Felix ;
Hayashi, Daichi ;
Guermazi, Ali .
BEST PRACTICE & RESEARCH IN CLINICAL RHEUMATOLOGY, 2014, 28 (01) :31-60
[33]   Between-group differences in infra-patellar fat pad size and signal in symptomatic and radiographic progression of knee osteoarthritis vs non-progressive controls and healthy knees - data from the FNIH Biomarkers Consortium Study and the Osteoarthritis Initiative [J].
Ruhdorfer, A. ;
Haniel, F. ;
Petersohn, T. ;
Doerrenberg, J. ;
Wirth, W. ;
Dannhauer, T. ;
Hunter, D. J. ;
Eckstein, F. .
OSTEOARTHRITIS AND CARTILAGE, 2017, 25 (07) :1114-1121
[34]   EULAR recommendations for the use of imaging in the clinical management of peripheral joint osteoarthritis [J].
Sakellariou, Garifallia ;
Conaghan, Philip G. ;
Zhang, Weiya ;
Bijlsma, Johannes W. J. ;
Boyesen, Pernille ;
D'Agostino, Maria Antonietta ;
Doherty, Michael ;
Fodor, Daniela ;
Kloppenburg, Margreet ;
Miese, Falk ;
Naredo, Esperanza ;
Porcheret, Mark ;
Iagnocco, Annamaria .
ANNALS OF THE RHEUMATIC DISEASES, 2017, 76 (09) :1484-1494
[35]   Osteoarthritis of the Knee [J].
Sharma, Leena .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (01) :51-59
[36]   AUTOMATED STAGING OF KNEE OSTEOARTHRITIS SEVERITY USING DEEP NEURAL NETWORKS [J].
Suresha, S. ;
Kidzinski, L. ;
Halilaj, E. ;
Gold, G. E. ;
Delp, S. L. .
OSTEOARTHRITIS AND CARTILAGE, 2018, 26 :S441-S441
[37]   Automatic Knee Osteoarthritis Diagnosis from Plain Radiographs: A Deep Learning-Based Approach [J].
Tiulpin, Aleksei ;
Thevenot, Jerome ;
Rahtu, Esa ;
Lehenkari, Petri ;
Saarakkala, Simo .
SCIENTIFIC REPORTS, 2018, 8
[38]   Predicting osteoarthritis onset and progression with 3D texture analysis of cartilage MRI DESS: 6-Year data from osteoarthritis initiative [J].
Vaarala, Ari ;
Casula, Victor ;
Peuna, Arttu ;
Panfilov, Egor ;
Mobasheri, Ali ;
Haapea, Marianne ;
Lammentausta, Eveliina ;
Nieminen, Miika T. .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2022, 40 (11) :2597-2608
[39]   Somatic Mutations Drive Distinct Imaging Phenotypes in Lung Cancer [J].
Velazquez, Emmanuel Rios ;
Parmar, Chintan ;
Liu, Ying ;
Coroller, Thibaud P. ;
Cruz, Gisele ;
Stringfield, Olya ;
Ye, Zhaoxiang ;
Makrigiorgos, Mike ;
Fennessy, Fiona ;
Mak, Raymond H. ;
Gillies, Robert ;
Quackenbush, John ;
Aerts, Hugo J. W. L. .
CANCER RESEARCH, 2017, 77 (14) :3922-3930
[40]   Radiomics analysis using MR imaging of subchondral bone for identification of knee osteoarthritis [J].
Xue, Zhihao ;
Wang, Liao ;
Sun, Qi ;
Xu, Jia ;
Liu, Ying ;
Ai, Songtao ;
Zhang, Lichi ;
Liu, Chenglei .
JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2022, 17 (01)