Personalized Functional Connectivity Based Spatio-Temporal Aggregated Attention Network for MCI Identification

被引:18
作者
Cui, Weigang [1 ]
Ma, Yulan [2 ]
Ren, Jianxun [3 ]
Liu, Jingyu [4 ]
Ma, Guolin [5 ]
Liu, Hesheng [3 ]
Li, Yang [2 ]
机构
[1] Beihang Univ, Sch Engn Med, Beijing 100191, Peoples R China
[2] Beihang Univ, Dept Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[3] Changping Lab, Beijing 100094, Peoples R China
[4] Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
[5] China Japan Friendship Hosp, Dept Radiol, Beijing 100029, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Functional magnetic resonance imaging; Correlation; Feature extraction; Time series analysis; Graph neural networks; Neuroimaging; Cerebral cortex; Personalized functional connectivity; MCI; graph neural network; spatio-temporal attention; functional MRI; MILD COGNITIVE IMPAIRMENT; BRAIN; PARCELLATION; ARCHITECTURE; VARIABILITY; FUSION;
D O I
10.1109/TNSRE.2023.3271062
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Functional connectivity (FC) networks deri- ved from resting-state magnetic resonance image (rs-fMRI) are effective biomarkers for identifying mild cognitive impairment (MCI) patients. However, most FC identification methods simply extract features from group-averaged brain templates, and neglect inter-subject functional variations. Furthermore, the existing methods generally concentrate on spatial correlation among brain regions, resulting in the inefficient capture of the fMRI temporal features. To address these limitations, we propose a novel personalized functional connectivity based dual-branch graph neural network with spatio-temporal aggregated attention (PFC-DBGNN-STAA) for MCI identification. Specifically, a personalized functional connectivity (PFC) template is firstly constructed to align 213 functional regions across samples and generate discriminative individualized FC features. Secondly, a dual-branch graph neural network (DBGNN) is conducted by aggregating features from the individual- and group-level templates with the cross-template FC, which is beneficial to improve the feature discrimination by considering dependency between templates. Finally, a spatio-temporal aggregated attention (STAA) module is investigated to capture the spatial and dynamic relationships between functional regions, which solves the limitation of insufficient temporal information utilization. We evaluate our proposed method on 442 samples from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and achieve the accuracies of 90.1%, 90.3%, 83.3% for normal control (NC) vs. early MCI (EMCI), EMCI vs. late MCI (LMCI), and NC vs. EMCI vs. LMCI classification tasks, respectively, indicating that our method boosts MCI identification performance and outperforms state-of-the-art methods.
引用
收藏
页码:2257 / 2267
页数:11
相关论文
共 48 条
[1]   The k-means Algorithm: A Comprehensive Survey and Performance Evaluation [J].
Ahmed, Mohiuddin ;
Seraj, Raihan ;
Islam, Syed Mohammed Shamsul .
ELECTRONICS, 2020, 9 (08) :1-12
[2]   The TAS Test project: a prospective longitudinal validation of new online motor-cognitive tests to detect preclinical Alzheimer's disease and estimate 5-year risks of cognitive decline and dementia [J].
Alty, Jane ;
Bai, Quan ;
Li, Renjie ;
Lawler, Katherine ;
St George, Rebecca J. ;
Hill, Edward ;
Bindoff, Aidan ;
Garg, Saurabh ;
Wang, Xinyi ;
Huang, Guan ;
Zhang, Kaining ;
Rudd, Kaylee D. ;
Bartlett, Larissa ;
Goldberg, Lynette R. ;
Collins, Jessica M. ;
Hinder, Mark R. ;
Naismith, Sharon L. ;
Hogg, David C. ;
King, Anna E. ;
Vickers, James C. .
BMC NEUROLOGY, 2022, 22 (01)
[3]   Detecting Risk Gene and Pathogenic Brain Region in EMCI Using a Novel GERF Algorithm Based on Brain Imaging and Genetic Data [J].
Bi, Xia-an ;
Zhou, Wenyan ;
Li, Lou ;
Xing, Zhaoxu .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (08) :3019-3028
[4]   Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity [J].
Braga, Rodrigo M. ;
Buckner, Randy L. .
NEURON, 2017, 95 (02) :457-+
[5]   Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing [J].
Cabeza, Roberto ;
Albert, Marilyn ;
Belleville, Sylvie ;
Craik, Fergus I. M. ;
Duarte, Audrey ;
Grady, Cheryl L. ;
Lindenberger, Ulman ;
Nyberg, Lars ;
Park, Denise C. ;
Reuter-Lorenz, Patricia A. ;
Rugg, Michael D. ;
Steffener, Jason ;
Rajah, M. Natasha .
NATURE REVIEWS NEUROSCIENCE, 2018, 19 (11) :701-710
[6]   Plasma N-terminal tau fragment levels predict future cognitive decline and neurodegeneration in healthy elderly individuals [J].
Chhatwal, Jasmeer P. ;
Schultz, Aaron P. ;
Dang, Yifan ;
Ostaszewski, Beth ;
Liu, Lei ;
Yang, Hyun-Sik ;
Johnson, Keith A. ;
Sperling, Reisa A. ;
Selkoe, Dennis J. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   Longitudinal changes of cortical thickness in early- versus late-onset Alzheimer's disease [J].
Cho, Hanna ;
Jeon, Seun ;
Kang, Sue J. ;
Lee, Jong-Min ;
Lee, Jae-Hong ;
Kim, Geon Ha ;
Shin, Ji Soo ;
Kim, Chi Hun ;
Noh, Young ;
Im, Kiho ;
Kim, Sung Tae ;
Chin, Juhee ;
Seo, Sang Won ;
Na, Duk L. .
NEUROBIOLOGY OF AGING, 2013, 34 (07) :1921.e9-1921.e15
[8]   Personalized fMRI Delineates Functional Regions Preserved within Brain Tumors [J].
Cui, Weigang ;
Wang, Yinyan ;
Ren, Jianxun ;
Hubbard, Catherine S. ;
Fu, Xiaoxuan ;
Fang, Shengyu ;
Wang, Danhong ;
Zhang, Hao ;
Li, Yang ;
Li, Luming ;
Jiang, Tao ;
Liu, Hesheng .
ANNALS OF NEUROLOGY, 2022, 91 (03) :353-366
[9]   Nested cross-validation based adaptive sparse representation algorithm and its application to pathological brain classification [J].
Dora, Lingraj ;
Agrawal, Sanjay ;
Panda, Rutuparna ;
Abraham, Ajith .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 114 :313-321
[10]   Patterns of longitudinal cortical atrophy over 3 years in empirically derived MCI subtypes [J].
Edmonds, Emily C. ;
Weigand, Alexandra J. ;
Hatton, Sean N. ;
Marshall, Anisa J. ;
Thomas, Kelsey R. ;
Ayala, Daniela A. ;
Bondi, Mark W. ;
McDonald, Carrie R. .
NEUROLOGY, 2020, 94 (24) :E2532-E2544