High-throughput deep learning variant effect prediction with Sequence UNET

被引:13
|
作者
Dunham, Alistair S. [1 ,2 ]
Beltrao, Pedro [1 ,3 ]
AlQuraishi, Mohammed [4 ]
机构
[1] European Bioinformat Inst EMBL EBI, European Mol Biol Lab, Wellcome Genome Campus, Hinxton CB10 1SD, Cambs, England
[2] Wellcome Sanger Inst, Wellcome Genome Campus, Hinxton CB10 1RQ, Cambs, England
[3] Swiss Fed Inst Technol, Inst Mol Syst Biol, Dept Biol, CH-8093 Zurich, Switzerland
[4] Columbia Univ, Dept Syst Biol, New York, NY 10027 USA
基金
英国惠康基金;
关键词
Variant effect prediction; Deep learning; Mutation; PSSM; Pathogenicity; Machine learning; SERVER;
D O I
10.1186/s13059-023-02948-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Understanding coding mutations is important for many applications in biology and medicine but the vast mutation space makes comprehensive experimental characterisation impossible. Current predictors are often computationally intensive and difficult to scale, including recent deep learning models. We introduce Sequence UNET, a highly scalable deep learning architecture that classifies and predicts variant frequency from sequence alone using multi-scale representations from a fully convolutional compression/expansion architecture. It achieves comparable pathogenicity prediction to recent methods. We demonstrate scalability by analysing 8.3B variants in 904,134 proteins detected through large-scale proteomics. Sequence UNET runs on modest hardware with a simple Python package.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] A deep learning model for detection and tracking in high-throughput images of organoid
    Bian, Xuesheng
    Li, Gang
    Wang, Cheng
    Liu, Weiquan
    Lin, Xiuhong
    Chen, Zexin
    Cheung, Mancheung
    Luo, Xiongbiao
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [12] Outdoor Plant Segmentation With Deep Learning for High-Throughput Field Phenotyping on a Diverse Wheat Dataset
    Zenkl, Radek
    Timofte, Radu
    Kirchgessner, Norbert
    Roth, Lukas
    Hund, Andreas
    Van Gool, Luc
    Walter, Achim
    Aasen, Helge
    FRONTIERS IN PLANT SCIENCE, 2022, 12
  • [13] Enhancing the potential of phenomic and genomic prediction in winter wheat breeding using high-throughput phenotyping and deep learning
    Kaushal, Swas
    Gill, Harsimardeep S.
    Billah, Mohammad Maruf
    Khan, Shahid Nawaz
    Halder, Jyotirmoy
    Bernardo, Amy
    St Amand, Paul
    Bai, Guihua
    Glover, Karl
    Maimaitijiang, Maitiniyazi
    Sehgal, Sunish K.
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [14] Deep learning approaches for non-coding genetic variant effect prediction: current progress and future prospects
    Wang, Xiaoyu
    Li, Fuyi
    Zhang, Yiwen
    Imoto, Seiya
    Shen, Hsin-Hui
    Li, Shanshan
    Guo, Yuming
    Yang, Jian
    Song, Jiangning
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (05)
  • [15] Combining High-Throughput Experiments and Active Learning to Characterize Deep Eutectic Solvents
    Abranches, Dinis O.
    Dean, William
    Munoz, Miguel
    Wang, Wei
    Liang, Yangang
    Gurkan, Burcu
    Maginn, Edward J.
    Colon, Yamil J.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (38): : 14218 - 14229
  • [16] A fully automated deep learning pipeline for high-throughput colony segmentation and classification
    Carl, Sarah H.
    Duempelmann, Lea
    Shimada, Yukiko
    Buhler, Marc
    BIOLOGY OPEN, 2020, 9 (06):
  • [17] High-Throughput Classification and Counting of Vegetable Soybean Pods Based on Deep Learning
    Zhang, Chenxi
    Lu, Xu
    Ma, Huimin
    Hu, Yuhao
    Zhang, Shuainan
    Ning, Xiaomei
    Hu, Jianwei
    Jiao, Jun
    AGRONOMY-BASEL, 2023, 13 (04):
  • [18] Multimodal high-throughput approach assisted by deep learning for the analysis of ceramic saggars
    Zhang, Lina
    Yuan, Jingbin
    Huang, Lian'ming
    Wu, Wei
    Wang, Qi
    Li, Weifu
    Min, Xin
    Han, Hua
    Fang, Minghao
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (02)
  • [19] Deep Fish: Deep Learning-Based Classification of Zebrafish Deformation for High-Throughput Screening
    Ishaq, Omer
    Sadanandan, Sajith Kecheril
    Wahlby, Carolina
    SLAS DISCOVERY, 2017, 22 (01) : 102 - 107
  • [20] Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning
    Parnamaa, Tanel
    Parts, Leopold
    G3-GENES GENOMES GENETICS, 2017, 7 (05): : 1385 - 1392