Random Schrodinger equation;
Inverse scattering;
Microlocally isotropic Gaussian distribution;
Single realisation;
Ergodicity;
Pseudo-differential operators;
TRANSMISSION EIGENFUNCTIONS;
TIME-REVERSAL;
SCATTERING;
D O I:
10.1007/s00209-023-03289-4
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we study an inverse scattering problem associated with the time-harmonic Schrodinger equation where both the potential and the source terms are unknown. The source term is assumed to be a generalised Gaussian random distribution of the microlocally isotropic type, whereas the potential function is assumed to be deterministic. The well-posedness of the forward scattering problem is first established in a proper sense. It is then proved that the rough strength of the random source can be uniquely recovered, independent of the unknown potential, by a single realisation of the passive scattering measurement. In addition to the use of a single sample of the passive measurement for two unknowns, another significant feature of our result is that there is no geometric restriction on the supports of the source and the potential: they can be separated, or overlapped, or one containing the other.
机构:
Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
UMCS, Inst Math, PL-20031 Lublin, PolandColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Bal, Guillaume
Komorowski, Tomasz
论文数: 0引用数: 0
h-index: 0
机构:
IMPAN, PL-00956 Warsaw, PolandColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
Komorowski, Tomasz
Ryzhik, Lenya
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Math, Stanford, CA 94305 USAColumbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
机构:
Univ Lille 1, UFR Math, CNRS, Lab Paul Painleve,UMR 8524, F-59655 Villeneuve Dascq, FranceUniv Lille 1, UFR Math, CNRS, Lab Paul Painleve,UMR 8524, F-59655 Villeneuve Dascq, France
Bensouilah, Abdelwahab
Van Duong Dinh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulouse, CNRS, UMR5219, Inst Math Toulouse, F-31062 Toulouse 9, FranceUniv Lille 1, UFR Math, CNRS, Lab Paul Painleve,UMR 8524, F-59655 Villeneuve Dascq, France
Van Duong Dinh
Zhu, Shihui
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Dept Math, Chengdu 610066, Peoples R China
Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R ChinaUniv Lille 1, UFR Math, CNRS, Lab Paul Painleve,UMR 8524, F-59655 Villeneuve Dascq, France