Biomarker-based Bayesian randomized clinical trial design for identifying a target population

被引:0
作者
Sugitani, Yasuo [1 ]
Morita, Satoshi [2 ,3 ]
Nakakura, Akiyoshi [2 ]
Yamamoto, Hideharu [1 ]
机构
[1] Chugai Pharmaceut Co Ltd, Biometr Dept, Tokyo, Japan
[2] Kyoto Univ, Dept Biomed Stat & Bioinformat, Grad Sch Med, Kyoto, Japan
[3] Kyoto Univ, Dept Biomed Stat & Bioinformat, Grad Sch Med, 54 Kawahara Cho,Sakyo Ku, Kyoto 6068507, Japan
关键词
Bayesian study design; biomarker; interim analysis; randomized clinical trial; time-to-event outcome; ADAPTIVE DESIGN; SURVIVAL; TIME;
D O I
10.1002/sim.9749
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The challenges and potential benefits of incorporating biomarkers into clinical trial designs have been increasingly discussed, in particular to develop new agents for immune-oncology or targeted cancer therapies. To more accurately identify a sensitive subpopulation of patients, in many cases, a larger sample size-and consequently higher development costs and a longer study period-might be required. This article discusses a biomarker-based Bayesian (BM-Bay) randomized clinical trial design that incorporates a predictive biomarker measured on a continuous scale with pre-determined cutoff points or a graded scale to define multiple patient subpopulations. We consider designing interim analyses with suitable decision criteria to achieve correct and efficient identification of a target patient population for developing a new treatment. The proposed decision criteria allow not only the take-in of sensitive subpopulations but also the ruling-out of insensitive ones on the basis of the efficacy evaluation of a time-to-event outcome. Extensive simulation studies are conducted to evaluate the operating characteristics of the proposed method, including the probability of correct identification of the desired subpopulation and the expected number of patients, under a wide range of clinical scenarios. For illustration purposes, we apply the proposed method to design a randomized phase II immune-oncology clinical trial.
引用
收藏
页码:2797 / 2810
页数:14
相关论文
共 37 条
  • [1] Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer
    Andre, Fabrice
    Ciruelos, Eva
    Rubovszky, Gabor
    Campone, Mario
    Loibl, Sibylle
    Rugo, Hope S.
    Iwata, Hiroji
    Conte, Pierfranco
    Mayer, Ingrid A.
    Kaufman, Bella
    Yamashita, Toshinari
    Lu, Yen-Shen
    Inoue, Kenichi
    Takahashi, Masato
    Papai, Zsuzsanna
    Longin, Anne-Sophie
    Mills, David
    Wilke, Celine
    Hirawat, Samit
    Juric, Dejan
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2019, 380 (20) : 1929 - 1940
  • [2] [Anonymous], 2020, Interacting with the FDA on Complex Innovative Trial Designs for Drugs and Biological Products
  • [3] Relationship between level of PD-L1 expression and outcomes in the KEYNOTE-010 study of pembrolizumab vs docetaxel for previously treated, PD-L1-Positive NSCLC.
    Baas, Paul
    Garon, Edward B.
    Herbst, Roy S.
    Felip, Enriqueta
    Perez-Gracia, Jose Luis
    Han, Ji-Youn
    Molina, Julian R.
    Kim, Joo-Hang
    Arvis, Catherine Dubos
    Ahn, Myung-Ju
    Majem, Margarita
    Fidler, Mary J.
    Barlesi, Fabrice
    Castro, Gilberto
    Garrido, Marcelo
    Shentu, Yue
    Lubiniecki, Gregory M.
    Im, Ellie
    Kim, Dong-Wan
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (15)
  • [4] Integrating predictive biomarkers and classifiers into oncology clinical development programmes
    Beckman, Robert A.
    Clark, Jason
    Chen, Cong
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2011, 10 (10) : 735 - 748
  • [5] Confirmatory adaptive designs with Bayesian decision tools for a targeted therapy in oncology
    Brannath, Werner
    Zuber, Emmanuel
    Branson, Michael
    Bretz, Frank
    Gallo, Paul
    Posch, Martin
    Racine-Poon, Amy
    [J]. STATISTICS IN MEDICINE, 2009, 28 (10) : 1445 - 1463
  • [6] Systematic Review of PD-1/PD-L1 Inhibitors in Oncology: From Personalized Medicine to Public Health
    Chang, Elaine
    Pelosof, Lorraine
    Lemery, Steven
    Gong, Yutao
    Goldberg, Kirsten B.
    Farrell, Ann T.
    Keegan, Patricia
    Veeraraghavan, Janaki
    Wei, Guo
    Blumenthal, Gideon M.
    Amiri-Kordestani, Laleh
    Singh, Harpreet
    Fashoyin-Aje, Lola
    Gormley, Nicole
    Kluetz, Paul G.
    Pazdur, Richard
    Beaver, Julia A.
    Theoret, Marc R.
    [J]. ONCOLOGIST, 2021, 26 (10) : E1786 - E1799
  • [7] Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy
    Cristescu, Razvan
    Mogg, Robin
    Ayers, Mark
    Albright, Andrew
    Murphy, Erin
    Yearley, Jennifer
    Sher, Xinwei
    Liu, Xiao Qiao
    Lu, Hongchao
    Nebozhyn, Michael
    Zhang, Chunsheng
    Lunceford, Jared
    Joe, Andrew
    Cheng, Jonathan
    Webber, Andrea L.
    Ibrahim, Nageatte
    Plimack, Elizabeth R.
    Ott, Patrick A.
    Seiwert, Tanguy
    Ribas, Antoni
    McClanahan, Terrill K.
    Tomassini, Joanne E.
    Loboda, Andrey
    Kaufman, David
    [J]. SCIENCE, 2018, 362 (6411) : 197 - +
  • [8] A Bayesian adaptive design with biomarkers for targeted therapies
    Eickhoff, Jens C.
    Kim, KyungMann
    Beach, Jason
    Kolesar, Jill M.
    Gee, Jason R.
    [J]. CLINICAL TRIALS, 2010, 7 (05) : 546 - 556
  • [9] European Medicines Agency, 2007, REFLECTION PAPER MET
  • [10] Four-Year Survival With Durvalumab After Chemoradiotherapy in Stage III NSCLC-an Update From the PACIFIC Trial
    Faivre-Finn, Corinne
    Vicente, David
    Kurata, Takayasu
    Planchard, David
    Paz-Ares, Luis
    Vansteenkiste, Johan F.
    Spigel, David R.
    Garassino, Marina C.
    Reck, Martin
    Senan, Suresh
    Naidoo, Jarushka
    Rimner, Andreas
    Wu, Yi-Long
    Gray, Jhanelle E.
    Ozguroglu, Mustafa
    Lee, Ki H.
    Cho, Byoung C.
    Kato, Terufumi
    de Wit, Maike
    Newton, Michael
    Wang, Lu
    Thiyagarajah, Piruntha
    Antonia, Scott J.
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2021, 16 (05) : 860 - 867