Infinitely Many Solutions for a Class of Kirchhoff Problems Involving the p(x)-Laplacian Operator

被引:0
作者
Ghanmi, A. [1 ]
Mbarki, L. [1 ]
Saoudi, K. [2 ,3 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Tunis 2092, Tunisia
[2] Univ Imam Abdulrahman Bin Faisal, Coll Sci Dammam, Dammam 31441, Saudi Arabia
[3] Univ Imam Abdulrahman Bin Faisal, Basic & Appl Sci Res Ctr, Dammam 31441, Saudi Arabia
关键词
-Laplacian operator; variational methods; -Kirchhoff problem; EQUATION; EXISTENCE;
D O I
10.1134/S0001434623010200
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is devoted to studying a class of generalized p(x)-Laplacian Kirchhoff equations in the following form: {-M(f(Omega)1/p(x) |del u|(p(x))) div ( |&del u|(p(x)-2)del u) = lambda|u|(r(x)-2)u + f(x, u) in Omega;, u = 0 on theta Omega, where Omega is a bounded domain of R-N (N >= 2) with smooth boundary theta Omega, lambda > 0, and p and r, are two continuous functions in (Omega) over bar. Using variational methods combined with some properties of the generalized Sobolev spaces, under appropriate assumptions on f and M, we obtain a number of results on the existence of solutions. In addition, we show the existence of infinitely many solutions in the case when f satisfies the evenness condition.
引用
收藏
页码:172 / 181
页数:10
相关论文
共 21 条
[1]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[2]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[3]   Minimax method involving singular p(x)-Kirchhoff equation [J].
Ben Ali, K. ;
Ghanmi, A. ;
Kefi, K. .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (11)
[4]   On an elliptic equation of Kirchhoff-type with a potential asymptotically linear at infinity [J].
Bensedik, Ahmed ;
Bouchekif, Mohammed .
MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (5-6) :1089-1096
[5]   Multiplicity of Nontrivial Solutions for Kirchhoff Type Problems [J].
Cheng, Bitao ;
Wu, Xian ;
Liu, Jun .
BOUNDARY VALUE PROBLEMS, 2010,
[6]   On a p-Kirchhoff equation via Krasnoselskii's genus [J].
Correa, Francisco Julio S. A. ;
Figueiredo, Giovany M. .
APPLIED MATHEMATICS LETTERS, 2009, 22 (06) :819-822
[7]   Solutions for a p(x)-Kirchhoff type equation with Neumann boundary data [J].
Dai, Guowei ;
Ma, Ruyun .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) :2666-2680
[8]   Infinitely many positive solutions for a p(x)-Kirchhoff-type equation [J].
Dai, Guowei ;
Liu, Duchao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (02) :704-710
[9]   Existence of solutions for a p(x)-Kirchhoff-type equation [J].
Dai, Guowei ;
Hao, Ruifang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (01) :275-284
[10]  
Diening L., 2002, Theoretical and Numerical Results for Electrorheological Fluids