Pivotal-Aware Principal Component Analysis

被引:2
|
作者
Li, Xuelong [1 ,2 ]
Li, Pei [1 ,2 ]
Zhang, Hongyuan [1 ,2 ]
Zhu, Kangjia [2 ,3 ]
Zhang, Rui [2 ,3 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Artificial Intelligence, Opt & Elect iOPEN, Xian 710072, Shaanxi, Peoples R China
[3] Shanghai Artificial Intelligence Lab, Shanghai 200232, Peoples R China
基金
中国国家自然科学基金;
关键词
Principal component analysis; Training; Robustness; Pollution measurement; Dimensionality reduction; Data models; Biological system modeling; Collaborative-enhanced learning; dimensionality reduction; principal component analysis (PCA); robust loss; REGRESSION;
D O I
10.1109/TNNLS.2023.3252602
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A conventional principal component analysis (PCA) frequently suffers from the disturbance of outliers, and thus, spectra of extensions and variations of PCA have been developed. However, all the existing extensions of PCA derive from the same motivation, which aims to alleviate the negative effect of the occlusion. In this article, we design a novel collaborative-enhanced learning framework that aims to highlight the pivotal data points in contrast. As for the proposed framework, only a part of well-fitting samples are adaptively highlighted, which indicates more significance during training. Meanwhile, the framework can collaboratively reduce the disturbance of the polluted samples as well. In other words, two contrary mechanisms could work cooperatively under the proposed framework. Based on the proposed framework, we further develop a pivotal-aware PCA (PAPCA), which utilizes the framework to simultaneously augment positive samples and constrain negative ones by retaining the rotational invariance property. Accordingly, extensive experiments demonstrate that our model has superior performance compared with the existing methods that only focus on the negative samples.
引用
收藏
页码:12201 / 12210
页数:10
相关论文
共 50 条
  • [1] Uncertainty-Aware Principal Component Analysis
    Goertler, Jochen
    Spinner, Thilo
    Streeb, Dirk
    Weiskopf, Daniel
    Deussen, Oliver
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (01) : 822 - 831
  • [2] Automatic sparse principal component analysis
    Park, Heewon
    Yamaguchi, Rui
    Imoto, Seiya
    Miyano, Satoru
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (03): : 678 - 697
  • [3] Non-Decreasing Concave Regularized Minimization for Principal Component Analysis
    Zheng, Qinghai
    Zhuang, Yixin
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 486 - 490
  • [4] Robust Principal Component Analysis based on Purity
    Pan, Jinyan
    Cai, Yingqi
    Xie, Youwei
    Lin, Tingting
    Gao, Yunlong
    Cao, Chao
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 2017 - 2023
  • [5] Weighted Principal Component Analysis
    Fan, Zizhu
    Liu, Ergen
    Xu, Baogen
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT III, 2011, 7004 : 569 - 574
  • [6] Universum Principal Component Analysis
    Chen, Xiao-hong
    Ma, Di
    INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND MANAGEMENT ENGINEERING (ITME 2014), 2014, : 236 - 241
  • [7] Decomposable Principal Component Analysis
    Wiesel, Ami
    Hero, Alfred O.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (11) : 4369 - 4377
  • [8] Sparsity Fuzzy C-Means Clustering With Principal Component Analysis Embedding
    Chen, Jingwei
    Zhu, Jianyong
    Jiang, Hongyun
    Yang, Hui
    Nie, Feiping
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (07) : 2099 - 2111
  • [9] Ensemble Principal Component Analysis
    Dorabiala, Olga
    Aravkin, Aleksandr Y.
    Kutz, J. Nathan
    IEEE ACCESS, 2024, 12 : 6663 - 6671