Applying Bayesian Models to Reduce Computational Requirements of Wildfire Sensitivity Analyses

被引:0
|
作者
Ujjwal, K. C. [1 ,6 ]
Aryal, Jagannath [2 ]
Bakar, K. Shuvo [3 ]
Hilton, James [4 ]
Buyya, Rajkumar [5 ]
机构
[1] Agr & Food Commonwealth Sci & Ind Res Org CSIRO, Brisbane, Qld 4067, Australia
[2] Univ Melbourne, Fac Engn & Informat Technol, Dept Infrastruct Engn, Melbourne, Vic 3053, Australia
[3] Univ Sydney, Fac Med & Hlth, Sch Publ Hlth, Sydney, NSW 2006, Australia
[4] Commonwealth Sci & Ind Res Org CSIRO, Data 61, Clayton, Vic 3168, Australia
[5] Univ Melbourne, Sch Comp & Informat Syst, Cloud Comp & Distributed Syst CLOUDS Lab, Melbourne, Vic 3053, Australia
[6] Univ Queensland, Bldg 80,306-306 Carmody Rd, Brisbane, Qld 4072, Australia
关键词
Bayesian inference; wildfire modeling; model fitting; sensitivity analysis; scenario analysis; WILDLAND FIRE; SIMULATION; PROBABILITY; UNCERTAINTY; LIKELIHOOD; SPREAD;
D O I
10.3390/atmos14030559
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Scenario analysis and improved decision-making for wildfires often require a large number of simulations to be run on state-of-the-art modeling systems, which can be both computationally expensive and time-consuming. In this paper, we propose using a Bayesian model for estimating the impacts of wildfires using observations and prior expert information. This approach allows us to benefit from rich datasets of observations and expert knowledge on fire impacts to investigate the influence of different priors to determine the best model. Additionally, we use the values predicted by the model to assess the sensitivity of each input factor, which can help identify conditions contributing to dangerous wildfires and enable fire scenario analysis in a timely manner. Our results demonstrate that using a Bayesian model can significantly reduce the resources and time required by current wildfire modeling systems by up to a factor of two while still providing a close approximation to true results.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Extending and Applying Spartan to Perform Temporal Sensitivity Analyses for Predicting Changes in Influential Biological Pathways in Computational Models
    Alden, Kieran
    Timmis, Jon
    Andrews, Paul S.
    Veiga-Fernandes, Henrique
    Coles, Mark C.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2017, 14 (02) : 431 - 442
  • [2] A branching algorithm to reduce computational time of batch models: Application for blast analyses
    Dennis, Adam A.
    Smyl, Danny J.
    Stirling, Chris G.
    Rigby, Samuel E.
    INTERNATIONAL JOURNAL OF PROTECTIVE STRUCTURES, 2023, 14 (02) : 135 - 167
  • [3] Probabilistic sensitivity analysis of complex models: a Bayesian approach
    Oakley, JE
    O'Hagan, A
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 751 - 769
  • [4] Bayesian sensitivity analyses for hidden sub-populations in weighted sampling
    Xia, Michelle
    Gustafson, Paul
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2014, 42 (03): : 436 - 450
  • [5] Variance-based Sensitivity Analyses of Piezoelectric Models
    Lahmer, T.
    Ilg, J.
    Lerch, R.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2015, 106 (02): : 105 - 126
  • [6] Computational Bayesian analysis of hidden Markov models
    Ryden, T
    Titterington, DM
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (02) : 194 - 211
  • [7] A protocol for implementing parameter sensitivity analyses in complex ecosystem models
    Lujan, Criscely
    Shin, Yunne-Jai
    Barrier, Nicolas
    Leadley, Paul
    Oliveros-Ramos, Ricardo
    ECOLOGICAL MODELLING, 2025, 501
  • [8] Sensitivity analysis of Repast computational ecology models with R/Repast
    Prestes Garcia, Antonio
    Rodriguez-Paton, Alfonso
    ECOLOGY AND EVOLUTION, 2016, 6 (24): : 8811 - 8831
  • [9] Bayesian approach to sensitivity of models for inbreeding coefficient
    dos Reis, Ricardo Luis
    Muniz, Joel Augusto
    Fonseca e Silva, Fabyano
    Safadi, Thelma
    de Aquino, Luiz Henrique
    CIENCIA RURAL, 2009, 39 (06): : 1752 - 1759
  • [10] Bayesian sensitivity analysis of bifurcating nonlinear models
    Becker, W.
    Worden, K.
    Rowson, J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 34 (1-2) : 57 - 75