Bioexcitons by Design: How Do We Get There?

被引:5
作者
Reppert, Mike [1 ]
机构
[1] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
关键词
EXCITATION-ENERGY TRANSFER; LIGHT-HARVESTING COMPLEX; ELECTRON-PHONON; ANTENNA PROTEIN; PHOTOSYSTEM-II; CHLOROPHYLL; COUPLINGS; PIGMENTS; STATES; BACTERIOCHLOROPHYLL;
D O I
10.1021/acs.jpcb.2c08787
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Biological pigment-protein complexes (PPCs) exhibit a remarkable ability to tune the optical properties of biological excitons (bioexcitons) through specific pigment-protein interactions. While such fine-tuning allows natural systems (e.g., photosynthetic proteins) to carry out their native functions with near-optimal performance, native function itself is often suboptimal for applications such as biofuel production or quantum technology development. This perspective offers a look at near term prospects for the rational reoptimization of PPC bioexcitons for new functions using site-directed mutagenesis. The primary focus is on the "structure-spectrum" challenge of understanding the relationships between structural features and spectroscopic properties. While recent examples demonstrate that site-directed mutagenesis can be used to tune nearly all key bioexciton parameters (e.g., site energies, interpigment couplings, and electronic-vibrational interactions), critical challenges remain before we achieve truly rational design of bioexciton properties.
引用
收藏
页码:1872 / 1879
页数:8
相关论文
共 94 条
  • [1] Calculation of pigment transition energies in the FMO protein
    Adolphs, Julia
    Mueh, Frank
    Madjet, Mohamed El-Amine
    Renger, Thomas
    [J]. PHOTOSYNTHESIS RESEARCH, 2008, 95 (2-3) : 197 - 209
  • [2] How water-mediated hydrogen bonds affect chlorophyll a/b selectivity in Water-Soluble Chlorophyll Protein
    Agostini, Alessandro
    Meneghin, Elena
    Gewehr, Lucas
    Pedron, Danilo
    Palm, Daniel M.
    Carbonera, Donatella
    Paulsen, Harald
    Jaenicke, Elmar
    Collini, Elisabetta
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [3] Ahad S., 2020, Photosynthetic protein spectroscopy lab
  • [4] Temperature Dependence of the Energy Transfer in LHCII Studied by Two-Dimensional Electronic Spectroscopy
    Akhtar, Parveen
    Thanh Nhut Do
    Nowakowski, Pawel J.
    Huerta-Viga, Adriana
    Khyasudeen, M. Faisal
    Lambrev, Petar H.
    Tan, Howe-Siang
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (31) : 6765 - 6775
  • [5] [Anonymous], 1994, BIOCHEM J, V299, P695
  • [6] [Anonymous], 1953, P R SOC LOND A-CONTA, V220, P472
  • [7] Tilting after Dutch windmills: probably no long-lived Davydov solitons in proteins
    Austin, Robert H.
    Xie, Aihua
    Fu, Dan
    Warren, W.
    Redlich, Britta
    van der Meer, Lex
    [J]. JOURNAL OF BIOLOGICAL PHYSICS, 2009, 35 (01) : 91 - 101
  • [8] Fine Tuning of Chlorophyll Spectra by Protein-Induced Ring Deformation
    Bednarczyk, Dominika
    Dym, Orly
    Prabahar, Vadivel
    Peleg, Yoav
    Pike, Douglas H.
    Noy, Dror
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (24) : 6901 - 6905
  • [9] Blankenship R.E, 2021, Molecular mechanisms of photosynthesis
  • [10] Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement
    Blankenship, Robert E.
    Tiede, David M.
    Barber, James
    Brudvig, Gary W.
    Fleming, Graham
    Ghirardi, Maria
    Gunner, M. R.
    Junge, Wolfgang
    Kramer, David M.
    Melis, Anastasios
    Moore, Thomas A.
    Moser, Christopher C.
    Nocera, Daniel G.
    Nozik, Arthur J.
    Ort, Donald R.
    Parson, William W.
    Prince, Roger C.
    Sayre, Richard T.
    [J]. SCIENCE, 2011, 332 (6031) : 805 - 809