Lanthanide-based ratiometric luminescence nanothermometry

被引:73
作者
Jia, Mochen [1 ]
Chen, Xu [1 ]
Sun, Ranran [1 ]
Wu, Di [1 ]
Li, Xinjian [1 ]
Shi, Zhifeng [1 ]
Chen, Guanying [2 ,3 ]
Shan, Chongxin [1 ]
机构
[1] Zhengzhou Univ, Minist Educ, Sch Phys & Microelect, Key Lab Mat Phys, Zhengzhou 450052, Peoples R China
[2] Harbin Inst Technol, MIIT Key Lab Crit Mat Technol New Energy Convers, Sch Chem & Chem Engn, Harbin, Peoples R China
[3] Harbin Inst Technol, Minist Educ, Key Lab Microsyst & Microstruct, Harbin 150001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
luminescent nanothermometry; lanthanide ions; ratiometric thermometers; thermal imaging; UP-CONVERSION EMISSION; THERMAL SENSITIVITY; TEMPERATURE; THERMOMETRY; NANOCRYSTALS; FLUORESCENCE; NANOPARTICLES; NANOSCALE; ENHANCEMENT; STRATEGY;
D O I
10.1007/s12274-022-4882-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Luminescent nanothermometry can precisely and remotely measure the internal temperature of objects at nanoscale precision, which, therefore, has been placed at the forefront of scientific attention. In particular, due to the high photochemical stability, low toxicity, rich working mechanisms, and superior thermometric performance, lanthanide-based ratiometric luminesencent thermometers are finding prevalent uses in integrated electronics and optoelectronics, property analysis of in-situ tracking, biomedical diagnosis and therapy, and wearable e-health monitoring. Despite recent progresses, it remains debate in terms of the underlying temperature-sensing mechanisms, the quantitative characterization of performance, and the reliability of temperature readouts. In this review, we show the origin of thermal response luminescence, rationalize the ratiometric scheme or thermometric mechanisms, delve into the problems in the characterization of thermometric performance, discuss the universal rules for the quantitative comparison, and showcase the cutting-edge design and emerging applications of lanthanide-based ratiometric thermometers. Finally, we cast a look at the challenges and emerging opportunities for further advances in this field.
引用
收藏
页码:2949 / 2967
页数:19
相关论文
共 123 条
[11]   Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids [J].
Brites, Carlos D. S. ;
Lima, Patricia P. ;
Silva, Nuno J. O. ;
Millan, Angel ;
Amaral, Vitor S. ;
Palacio, Fernando ;
Carlos, Luis D. .
NANOSCALE, 2013, 5 (16) :7572-7580
[12]   Thermometry at the nanoscale [J].
Brites, Carlos D. S. ;
Lima, Patricia P. ;
Silva, Nuno J. O. ;
Millan, Angel ;
Amaral, Vitor S. ;
Palacio, Fernando ;
Carlos, Luis D. .
NANOSCALE, 2012, 4 (16) :4799-4829
[13]   Lanthanide-based luminescent molecular thermometers [J].
Brites, Carlos D. S. ;
Lima, Patricia P. ;
Silva, Nuno J. O. ;
Millan, Angel ;
Amaral, Vitor S. ;
Palacio, Fernando ;
Carlos, Luis D. .
NEW JOURNAL OF CHEMISTRY, 2011, 35 (06) :1177-1183
[14]   A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale [J].
Brites, Carlos D. S. ;
Lima, Patricia P. ;
Silva, Nuno J. O. ;
Millan, Angel ;
Amaral, Vitor S. ;
Palacio, Fernando ;
Carlos, Luis D. .
ADVANCED MATERIALS, 2010, 22 (40) :4499-4504
[15]   Wide-range and highly-sensitive optical thermometers based on the temperature-dependent energy transfer from Er to Nd in Er/Yb/Nd codoped NaYF4 upconversion nanocrystals [J].
Cao, Baosheng ;
Bao, Yanan ;
Liu, Yang ;
Shang, Jingyu ;
Zhang, Zhenyi ;
He, Yangyang ;
Feng, Zhiqing ;
Dong, Bin .
CHEMICAL ENGINEERING JOURNAL, 2020, 385
[16]   Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions [J].
Chen, Guanying ;
Liu, Haichun ;
Liang, Huijuan ;
Somesfalean, Gabriel ;
Zhang, Zhiguo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (31) :12030-12036
[17]   2D Van der Waals Rare Earth Material Based Ratiometric Luminescence Thermography Integrated on Micro-Nano Devices Vertically [J].
Chen, Ping ;
Xu, Xiang ;
Li, Dongyan ;
Li, Zexin ;
Wang, Haoyun ;
Pi, Lejing ;
Zhou, Xing ;
Zhai, Tianyou .
ADVANCED OPTICAL MATERIALS, 2022, 10 (06)
[18]   Intrinsic ultraviolet luminescence from Lu2O3, Lu2SiO5 and Lu2SiO5:Ce3+ [J].
Cooke, DW ;
Bennett, BL ;
Muenchausen, RE ;
Lee, JK ;
Nastasi, MA .
JOURNAL OF LUMINESCENCE, 2004, 106 (02) :125-132
[19]   Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles [J].
Cui, Xiangshui ;
Cheng, Yao ;
Lin, Hang ;
Huang, Feng ;
Wu, Qingping ;
Wang, Yuansheng .
NANOSCALE, 2017, 9 (36) :13794-13799
[20]   In Vivo Luminescence Nanothermometry: from Materials to Applications [J].
del Rosal, Blanca ;
Ximendes, Erving ;
Rocha, Ueslen ;
Jaque, Daniel .
ADVANCED OPTICAL MATERIALS, 2017, 5 (01)