Blow-up issues for the hyperelastic rod equation

被引:2
作者
Zhao, Jianmin [1 ]
Yang, Shaojie [1 ]
机构
[1] Kunming Univ Sci & Technol, Dept Syst Sci & Appl Math, Kunming 650500, Yunnan, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 201卷 / 02期
关键词
Blow-up; The hyperelastic rod equation; SHALLOW-WATER EQUATION; MODEL-EQUATIONS; BREAKING WAVES;
D O I
10.1007/s00605-022-01715-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the hyperelastic rod equation which describes far-field, finite length, finite amplitude radial deformation waves in cylindrical compressible hyperelastic rods. Based on the conservation laws and the blow-up scenario, we derive a new blow-up result which extending earlier blow-up results for the hyperelastic rod equation.
引用
收藏
页码:565 / 571
页数:7
相关论文
共 50 条
[1]   Blow-up issues for the hyperelastic rod equation [J].
Jianmin Zhao ;
Shaojie Yang .
Monatshefte für Mathematik, 2023, 201 :565-571
[2]   Blow-up phenomenon for a periodic rod equation [J].
Zhou, Y .
PHYSICS LETTERS A, 2006, 353 (06) :479-486
[3]   On the blow-up of solutions to a nonlinear dispersive rod equation [J].
Wahlen, Erik .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) :1318-1324
[4]   To blow-up or not to blow-up for a granular kinetic equation [J].
Carrillo, Jose A. ;
Shu, Ruiwen ;
Wang, Li ;
Xu, Wuzhe .
PHYSICA D-NONLINEAR PHENOMENA, 2024, 470
[5]   BLOW-UP OF SOLUTIONS TO A PERIODIC NONLINEAR DISPERSIVE ROD EQUATION [J].
Jin, Liangbing ;
Liu, Yongming ;
Zhou, Yong .
DOCUMENTA MATHEMATICA, 2010, 15 :267-283
[6]   Blow-up phenomena for the generalized FORQ/MCH equation [J].
Yang, Shaojie .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01)
[7]   Blow-up analysis and spatial asymptotic profiles of solutions to a modified two-component hyperelastic rod system [J].
Wei, Long ;
Zeng, Qi .
ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (01)
[8]   ON BLOW-UP FOR THE HARTREE EQUATION [J].
Zheng, Jiqiang .
COLLOQUIUM MATHEMATICUM, 2012, 126 (01) :111-124
[9]   Blow-up phenomenon for the integrable Novikov equation [J].
Jiang, Zaihong ;
Ni, Lidiao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) :551-558
[10]   A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation [J].
Klein, Christian ;
Saut, Jean-Claude .
PHYSICA D-NONLINEAR PHENOMENA, 2015, 295 :46-65