Isolated Co Atoms Anchored on Defective Nitrogen-doped Carbon Graphene as Efficient Oxygen Reduction Reaction Electrocatalysts

被引:35
|
作者
Rao, Peng [1 ]
Luo, Junming [1 ]
Wu, Daoxiong [1 ]
Li, Jing [1 ]
Chen, Qi [1 ]
Deng, Peilin [1 ]
Shen, Yijun [1 ]
Tian, Xinlong [1 ]
机构
[1] Hainan Univ, Sch Chem Engn & Technol, State Key Lab Marine Resource Utilizat South Chin, Hainan Prov Key Lab Fine Chem, Haikou 570228, Hainan, Peoples R China
基金
中国国家自然科学基金;
关键词
movable type printing method; oxygen reduction reaction; single-atom catalyst; zinc-air battery;
D O I
10.1002/eem2.12371
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Oxygen reduction reaction (ORR) is the heart of many new energy conversions and storage devices, such as metal-air batteries and fuel cells. However, ORR is currently facing the dilemma of sluggish intrinsic kinetics and the noble electrocatalysts of high price and low reserves. In this work, isolated Co atoms anchored on defective nitrogen-doped carbon graphene single-atom catalyst (Co-SAC/NC) are synthesized via the proposed movable type printing method. The prepared Co-SAC/NC catalyst demonstrates admirable ORR performance, with a high half-wave potential of 0.884 V in alkaline electrolytes and outstanding durability. In addition, an assembled zinc-air battery with prepared Co-SAC/NC as air-cathode catalyst displays a high-peak power density of 179 mW cm(-2) and a high-specific capacity (757 mAh g(-1)). Density functional theory calculations confirm that the true active sites of the prepared catalyst are Co-N-4 moieties, and further reveal a significantly electronic structure evolution of Co sites in the ORR process, in which the project density of states and local magnetic moment of Co atom varies during its whole reaction process. This work not only paves a new avenue for synthesizing SACs as robust electrocatalysts, but also provides an electronic-level insight into the evolution of the electronic structure of single-atom catalysts.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Fe atoms anchored on defective nitrogen doped hollow carbon spheres as efficient electrocatalysts for oxygen reduction reaction
    Panpan Su
    Wenjuan Huang
    Jiangwei Zhang
    Utsab Guharoy
    Qinggang Du
    Qiao Sun
    Qike Jiang
    Yi Cheng
    Jie Yang
    Xiaoli Zhang
    Yongsheng Liu
    San Ping Jiang
    Jian Liu
    Nano Research, 2021, 14 : 1069 - 1077
  • [2] Fe atoms anchored on defective nitrogen doped hollow carbon spheres as efficient electrocatalysts for oxygen reduction reaction
    Su, Panpan
    Huang, Wenjuan
    Zhang, Jiangwei
    Guharoy, Utsab
    Du, Qinggang
    Sun, Qiao
    Jiang, Qike
    Cheng, Yi
    Yang, Jie
    Zhang, Xiaoli
    Liu, Yongsheng
    Jiang, San Ping
    Liu, Jian
    NANO RESEARCH, 2021, 14 (04) : 1069 - 1077
  • [3] Nitrogen-Doped Graphene Oxide Electrocatalysts for the Oxygen Reduction Reaction
    Dumont, Joseph H.
    Martinez, Ulises
    Artyushkova, Kateryna
    Purdy, Geraldine M.
    Dattelbaum, Andrew M.
    Zelenay, Piotr
    Mohite, Aditya
    Atanassov, Plamen
    Gupta, Gautam
    ACS APPLIED NANO MATERIALS, 2019, 2 (03): : 1675 - 1682
  • [4] Nitrogen-doped Graphene Loaded with Cobalt Nanoparticles as Efficient Electrocatalysts for Oxygen Reduction Reaction
    Zhang, Hong
    Li, Yanping
    Han, Gaoyi
    CHEMISTRYSELECT, 2022, 7 (04):
  • [5] Atomically dispersed Co atoms in nitrogen-doped carbon aerogel for efficient and durable oxygen reduction reaction
    Mai, Zequn
    Liu, Zhe
    Liu, Sanchuan
    Zhang, Xiaofeng
    Cui, Zhiming
    Tang, Zhenghua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (74) : 36836 - 36847
  • [6] Nitrogen-Doped Carbon Nanocages as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction
    Chen, Sheng
    Bi, Jiyu
    Zhao, Yu
    Yang, Lijun
    Zhang, Chen
    Ma, Yanwen
    Wu, Qiang
    Wang, Xizhang
    Hu, Zheng
    ADVANCED MATERIALS, 2012, 24 (41) : 5593 - 5597
  • [7] Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient Electrocatalysts for Oxygen Reduction Reaction
    Parvez, Khaled
    Yang, Shubin
    Hernandez, Yenny
    Winter, Andreas
    Turchanin, Andrey
    Feng, Xinliang
    Muellen, Klaus
    ACS NANO, 2012, 6 (11) : 9541 - 9550
  • [8] The Oxygen Reduction Reaction on Nitrogen-Doped Graphene
    Felix Studt
    Catalysis Letters, 2013, 143 : 58 - 60
  • [9] The Oxygen Reduction Reaction on Nitrogen-Doped Graphene
    Studt, Felix
    CATALYSIS LETTERS, 2013, 143 (01) : 58 - 60
  • [10] Nitrogen-Doped Graphene Nanoribbons as Efficient Metal-Free Electrocatalysts for Oxygen Reduction
    Liu, Mingkai
    Song, Yanfang
    He, Sixin
    Tjiu, Weng Weei
    Pan, Jisheng
    Xia, Yong-Yao
    Liu, Tianxi
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (06) : 4214 - 4222