GENERALIZED KANTOROVICH MODIFICATIONS OF POSITIVE LINEAR OPERATORS

被引:18
作者
Acu, Ana-Maria [1 ]
Buscu, Ioan Cristian [2 ]
Rasa, Ioan [2 ]
机构
[1] Lucian Blaga Univ Sibiu, Dept Math & Informat, Str Dr I Ratiu, RO-550012 Sibiu, Romania
[2] Tech Univ Cluj Napoca, Fac Automat & Comp Sci, Dept Math, Str Memorandumului nr 28, Cluj Napoca 400114, Romania
来源
MATHEMATICAL FOUNDATIONS OF COMPUTING | 2023年 / 6卷 / 01期
关键词
positive linear operators; Kantorovich modification; invariant measure; eigenstructure; limit of iterates;
D O I
10.3934/mfc.2021042
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Starting with a positive linear operator we apply the Kantorovich modification and a related modification. The resulting operators are investigated. We are interested in the eigenstructure, Voronovskaya formula, the induced generalized convexity, invariant measures and iterates. Some known results from the literature are extended.
引用
收藏
页码:54 / 62
页数:9
相关论文
共 11 条
[1]   Generalized Bernstein Kantorovich operators: Voronovskaya type results, convergence in variation [J].
Acu, Ana Maria ;
Aral, Ali ;
Rasa, Ioan .
CARPATHIAN JOURNAL OF MATHEMATICS, 2022, 38 (01) :1-12
[2]   Voronovskaya Type Results and Operators Fixing Two Functions [J].
Acu, Ana Maria ;
Maduta, Alexandra-Ioana ;
Rasa, Ioan .
MATHEMATICAL MODELLING AND ANALYSIS, 2021, 26 (03) :395-410
[3]  
Altomare F., 1994, DEGRUYTER STUD MATH, V17
[4]  
Altomare F., 2012, Boll. U. M. I Serie 9, V5, P1
[5]   A Note on the Difference of Positive Operators and Numerical Aspects [J].
Aral, A. ;
Erbay, H. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)
[6]   On approximation by some Bernstein-Kantorovich exponential-type polynomials [J].
Aral, Ali ;
Otrocol, Diana ;
Rasa, Ioan .
PERIODICA MATHEMATICA HUNGARICA, 2019, 79 (02) :236-254
[7]   Bernstein-type operators which preserve polynomials [J].
Cardenas-Morales, D. ;
Garrancho, P. ;
Rasa, I. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (01) :158-163
[8]   The eigenstructure of the Bernstein operator [J].
Cooper, S ;
Waldron, S .
JOURNAL OF APPROXIMATION THEORY, 2000, 105 (01) :133-165
[9]   Eigenstructure and iterates for uniquely ergodic Kantorovich modifications of operators [J].
Heilmann, Margareta ;
Rasa, Ioan .
POSITIVITY, 2017, 21 (03) :897-910
[10]   ITERATES OF BERNSTEIN POLYNOMIALS [J].
KELISKY, RP ;
RIVLIN, TJ .
PACIFIC JOURNAL OF MATHEMATICS, 1967, 21 (03) :511-&