Exploiting the Data-Driven Regularizer in Group Delay-Based Sparse Recovery Algorithms for Robust 2D-DoA Estimation

被引:0
作者
Ali, Murtiza [1 ]
Nathwani, Karan [1 ]
机构
[1] Indian Inst Technol Jammu, Dept Elect Engn, Jammu 181221, India
关键词
Estimation; Azimuth; Sensors; Direction-of-arrival estimation; Signal to noise ratio; Gaussian processes; Training; Sensor signal processing; Gaussian process regression (GPR); group delay; MUSIC; pairing mismatch; regularization parameter; sparse recovery (SR); OF-ARRIVAL;
D O I
10.1109/LSENS.2024.3362987
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The choice of the regularization parameter ( eta ) plays a vital role in sparse recovery (SR) algorithms for robust direction-of-arrival (DoA) estimation. Contrary to widely spaced sources, the ( eta ) is generally determined empirically for contiguous sources. Therefore, the first contribution of this work presents the possibility of using data-driven approaches, such as Gaussian process regression (GPR), to select eta for DoA estimation of contiguous sources. Second, with the eta chosen via GPR, we propose a 2D-DoA estimation as an extension to 1-D optimum MUSIC group delay- & ell;(1) -singular value decomposition (SVD) (optMGD- & ell;(1) -SVD) capable of localizing contiguous sources with few sensors and snapshots. Herein, azimuth and elevation are estimated independently on subarrays of an L-shape array with a pairing technique utilizing cross-correlation matrix to avoid the pairing mismatch. This integrated proposed approach is referred to as GoptMGD- & ell;(1) -SVD in this work. The proposed method is evaluated in terms of average-root-mean-square-error and resolution probability, where the proposed method is found to achieve better performance at lower signal-to-noise ratio ( <-10 dB) for contiguous sources.
引用
收藏
页数:4
相关论文
共 16 条
[1]  
Ali M., 2023, P ICASSP IEEE INT C, P1
[2]   Significance of group delay spectrum in re-weighted sparse recovery algorithms for DOA estimation [J].
Ali, Murtiza ;
Koul, Ashwani ;
Nathwani, Karan .
DIGITAL SIGNAL PROCESSING, 2022, 122
[3]   The matrix pencil method for two-dimensional direction of arrival estimation employing an L-shaped array [J].
delRio, JEF ;
CatedraPerez, MF .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (11) :1693-1694
[4]   2-D DOA Estimation for L-Shaped Array With Array Aperture and Snapshots Extension Techniques [J].
Dong, Yang-Yang ;
Dong, Chun-xi ;
Liu, Wei ;
Chen, Hua ;
Zhao, Guo-qing .
IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (04) :495-499
[5]   Computationally Efficient 2-D DOA Estimation for L-Shaped Array With Automatic Pairing [J].
Dong, Yang-Yang ;
Dong, Chun-xi ;
Xu, Jin ;
Zhao, Guo-qing .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2016, 15 :1669-1672
[6]   MIMO Radar 3-D Imaging Based on Multi-Dimensional Sparse Recovery and Signal Support Prior Information [J].
Hu, Xiaowei ;
Tong, Ningning ;
Guo, Yiduo ;
Ding, Shanshan .
IEEE SENSORS JOURNAL, 2018, 18 (08) :3152-3162
[7]   Pair-matching method for estimating 2-D angle of arrival with a cross-correlation matrix [J].
Kikuchi, Shohei ;
Tsuji, Hiroyuki ;
Sano, Akira .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2006, 5 :35-40
[8]   A Sparse-Based Approach for DOA Estimation and Array Calibration in Uniform Linear Array [J].
Liu, Hongqing ;
Zhao, Luming ;
Li, Yong ;
Jing, Xiaorong ;
Truong, Trieu-Kien .
IEEE SENSORS JOURNAL, 2016, 16 (15) :6018-6027
[9]   A sparse signal reconstruction perspective for source localization with sensor arrays [J].
Malioutov, D ;
Çetin, M ;
Willsky, AS .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (08) :3010-3022
[10]  
MOROZOV VA, 1966, DOKL AKAD NAUK SSSR+, V167, P510