OPTICAL PROPERTIES OF DOUBLE DOPED LiNbO3:Gd:Mg CRYSTALS

被引:0
作者
Teplyakova, N. A. [1 ]
Sidorov, N. V. [1 ]
Palatnikov, M. N. [2 ]
机构
[1] Russian Acad Sci, Kola Sci Ctr, Fed Res Ctr, Tananaev Inst Chem,Vibrat Spect Sect Elect Engn M, Apatity, Russia
[2] Russian Acad Sci, Kola Sci Ctr, Fed Res Ctr, Tananaev Inst Chem,Elect Engn Mat Lab, Apatity, Russia
关键词
lithium niobate; crystal; defects; laser conoscopy; photorefractive properties;
D O I
10.26456/pcascnn/2023.15.207
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
By direct alloying of congruent melt with magnesium and gadolinium oxides, compositionally uniform nonlinear optical single double doped crystals with different content of dopants have been grown: LiNbO3:Gd3+(0,003):Mg2+(0,65 wt. %), LiNbO3:Gd3+(0,23):Mg2+(0,75 wt. %) and LiNbO3:Gd3+(0,25):Mg2+(0,75 wt. %). The results obtained by laser conoscopy and photoinduced light scattering indicate a high structural perfection of the grown crystals. The results give grounds to assert that LiNbO3:Gd:Mg crystals are close to a stoichiometric crystal in some of their properties. A low value of the coercive field (approximate to 2,3 kV/cm) is one of such properties of stoichiometric and magnesium-doped LiNbO3 crystals, which are important for creating materials for laser radiation conversion on periodically polarized submicron-sized domains with flat boundaries. In this case, the grown LiNbO3:Gd:Mg crystals have a much higher optical uniformity than a stoichiometric crystal. Crystals of LiNbO3:Gd3+(0,003):Mg2+ (0,65 wt. %) and LiNbO3:Gd3+(0,23):Mg2+ (0,75 wt. %) have the highest optical uniformity and the absence of the photorefraction effect. Increase of gadolinium concentration to 0,25 wt. % leads to increased distortion of the conoscopic pattern and to the appearance of a significant photorefractive response of the LiNbO3:Gd3+(0,25):Mg2+(0,75 wt. %) crystal.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 11 条
  • [1] Blistanov AA, 1998, CRYSTALLOGR REP+, V43, P78
  • [2] Dual-wavelength source from 5% MgO:PPLN cylinders for the characterization of nonlinear infrared crystals
    Kemlin, Vincent
    Jegouso, David
    Debray, Jerome
    Boursier, Elodie
    Segonds, Patricia
    Boulanger, Benoit
    Ishizuki, Hideki
    Taira, Takunori
    Mennerat, Gabriel
    Melkonian, Jean-Michel
    Godard, Antoine
    [J]. OPTICS EXPRESS, 2013, 21 (23): : 28886 - 28891
  • [3] Enhanced Ultraviolet Damage Resistance in Magnesium Doped Lithium Niobate Crystals through Zirconium Co-Doping
    Kong, Tengfei
    Luo, Yi
    Wang, Weiwei
    Kong, Hanxiao
    Fan, Zhiqin
    Liu, Hongde
    [J]. MATERIALS, 2021, 14 (04) : 1 - 6
  • [4] Kuzminov Yu.S., 1987, Electro-optical and nonlinear-optical crystal of lithium niobate
  • [5] Growth and optical properties of Pr-Mg co-doped LiNbO3 crystal using Bridgman method
    Liu, Jianfei
    Liu, Ao
    Chen, Yunlin
    Tu, Xiaoniu
    Zheng, Yanqing
    [J]. PHYSICA B-CONDENSED MATTER, 2022, 624
  • [6] High average power parametric wavelength conversion at 3.31-3.48 m in MgO:PPLN
    Murray, R. T.
    Runcorn, T. H.
    Guha, S.
    Taylor, J. R.
    [J]. OPTICS EXPRESS, 2017, 25 (06): : 6421 - 6430
  • [7] A Comparative Study of the Structure and Chemical Homogeneity of LiNbO3:Mg(∼5.3 mol %) Crystals Grown from Charges of Different Origins
    Sidorov, N. V.
    Bobreva, L. A.
    Teplyakova, N. A.
    Palatnikov, M. N.
    Makarova, O. V.
    [J]. INORGANIC MATERIALS, 2019, 55 (11) : 1132 - 1137
  • [8] Sidorov N.V., 2021, Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials, P383, DOI [10.26456/pcascnn/2021.13.383, DOI 10.26456/PCASCNN/2021.13.383]
  • [9] Sidorov N. V., 2019, Lazernaya konoskopiya i fotoindutsirovannoe rasseyanie sveta v issledovaniyakh svoystv nelineyno-opticheskogo monokristalla niobata litiya
  • [10] Volk T., 2008, LITHIUM NIOBATE DEFE, P250