OPTICAL PROPERTIES OF DOUBLE DOPED LiNbO3:Gd:Mg CRYSTALS

被引:0
作者
Teplyakova, N. A. [1 ]
Sidorov, N. V. [1 ]
Palatnikov, M. N. [2 ]
机构
[1] Russian Acad Sci, Kola Sci Ctr, Fed Res Ctr, Tananaev Inst Chem,Vibrat Spect Sect Elect Engn M, Apatity, Russia
[2] Russian Acad Sci, Kola Sci Ctr, Fed Res Ctr, Tananaev Inst Chem,Elect Engn Mat Lab, Apatity, Russia
关键词
lithium niobate; crystal; defects; laser conoscopy; photorefractive properties;
D O I
10.26456/pcascnn/2023.15.207
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
By direct alloying of congruent melt with magnesium and gadolinium oxides, compositionally uniform nonlinear optical single double doped crystals with different content of dopants have been grown: LiNbO3:Gd3+(0,003):Mg2+(0,65 wt. %), LiNbO3:Gd3+(0,23):Mg2+(0,75 wt. %) and LiNbO3:Gd3+(0,25):Mg2+(0,75 wt. %). The results obtained by laser conoscopy and photoinduced light scattering indicate a high structural perfection of the grown crystals. The results give grounds to assert that LiNbO3:Gd:Mg crystals are close to a stoichiometric crystal in some of their properties. A low value of the coercive field (approximate to 2,3 kV/cm) is one of such properties of stoichiometric and magnesium-doped LiNbO3 crystals, which are important for creating materials for laser radiation conversion on periodically polarized submicron-sized domains with flat boundaries. In this case, the grown LiNbO3:Gd:Mg crystals have a much higher optical uniformity than a stoichiometric crystal. Crystals of LiNbO3:Gd3+(0,003):Mg2+ (0,65 wt. %) and LiNbO3:Gd3+(0,23):Mg2+ (0,75 wt. %) have the highest optical uniformity and the absence of the photorefraction effect. Increase of gadolinium concentration to 0,25 wt. % leads to increased distortion of the conoscopic pattern and to the appearance of a significant photorefractive response of the LiNbO3:Gd3+(0,25):Mg2+(0,75 wt. %) crystal.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 11 条
[1]  
Blistanov AA, 1998, CRYSTALLOGR REP+, V43, P78
[2]   Dual-wavelength source from 5% MgO:PPLN cylinders for the characterization of nonlinear infrared crystals [J].
Kemlin, Vincent ;
Jegouso, David ;
Debray, Jerome ;
Boursier, Elodie ;
Segonds, Patricia ;
Boulanger, Benoit ;
Ishizuki, Hideki ;
Taira, Takunori ;
Mennerat, Gabriel ;
Melkonian, Jean-Michel ;
Godard, Antoine .
OPTICS EXPRESS, 2013, 21 (23) :28886-28891
[3]   Enhanced Ultraviolet Damage Resistance in Magnesium Doped Lithium Niobate Crystals through Zirconium Co-Doping [J].
Kong, Tengfei ;
Luo, Yi ;
Wang, Weiwei ;
Kong, Hanxiao ;
Fan, Zhiqin ;
Liu, Hongde .
MATERIALS, 2021, 14 (04) :1-6
[4]  
Kuzminov Yu.S., 1987, Electro-optical and nonlinear-optical crystal of lithium niobate
[5]   Growth and optical properties of Pr-Mg co-doped LiNbO3 crystal using Bridgman method [J].
Liu, Jianfei ;
Liu, Ao ;
Chen, Yunlin ;
Tu, Xiaoniu ;
Zheng, Yanqing .
PHYSICA B-CONDENSED MATTER, 2022, 624
[6]   High average power parametric wavelength conversion at 3.31-3.48 m in MgO:PPLN [J].
Murray, R. T. ;
Runcorn, T. H. ;
Guha, S. ;
Taylor, J. R. .
OPTICS EXPRESS, 2017, 25 (06) :6421-6430
[7]   A Comparative Study of the Structure and Chemical Homogeneity of LiNbO3:Mg(∼5.3 mol %) Crystals Grown from Charges of Different Origins [J].
Sidorov, N. V. ;
Bobreva, L. A. ;
Teplyakova, N. A. ;
Palatnikov, M. N. ;
Makarova, O. V. .
INORGANIC MATERIALS, 2019, 55 (11) :1132-1137
[8]  
Sidorov N.V., 2021, Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials, P383, DOI [10.26456/pcascnn/2021.13.383, DOI 10.26456/PCASCNN/2021.13.383]
[9]  
Teplyakova N. A., 2019, Laser Conoscopy and Photoinduced Light Scattering in Property Investigations of Nonlinear-Optical Lithium Niobate Crystal
[10]  
Volk T., 2008, Lithium Niobate. Defects, P250