FEATURES OF THE DEFECT STRUCTURE OF A LiNbO3:Cu(0.015 WT.%) SINGLE CRYSTAL

被引:0
作者
Teplyakova, N. A. [1 ]
Sidorov, N. V. [1 ]
Palatnikov, M. N. [2 ]
机构
[1] Russian Acad Sci, Kola Sci Ctr, Fed Res Ctr, Tananaev Inst Chem,Vibrat Spect Sect Elect Engn M, Apatity, Russia
[2] Russian Acad Sci, Kola Sci Ctr, Fed Res Ctr, Tananaev Inst Chem,Elect Engn Mat Lab, Apatity, Russia
关键词
lithium niobate; crystal; defects; photorefractive properties; photovoltaic fields; band gap; LINBO3;
D O I
10.26456/pcascnn/2023.15.215
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
By direct alloying of melt with copper oxide,. compositionally uniformity LiNbO3:Cu (0,015 wt%) single crystal doped with a photovoltaically active copper dopant has been grown. The optical properties of the single crystal have been studied by photoinduced light scattering. The values of the diffusion and photovoltaic fields were calculated for the studied crystals based on the intensity and magnitude of the opening angle of the speckle structure of the photoinduced light scattering. Significant differences in the photoinduced light scattering patterns and in the values of the photoinduced light scattering photoelectric parameters of nominally pure crystals of congruent and stoichiometric compositions and a LiNbO3:Cu (0,015 wt%) crystal have been found. It has been established that when a congruent lithium niobate crystal is doped with copper cations, the diffusion field increases, the photofoltaic field decreases, and the band gap in the crystal decreases noticeably. In contrast to the crystal of stoichiometric compositions, the photovoltaic mechanism remains the predominant mechanism of photorefraction for crystals of congruent composition and LiNbO3:Cu (0,015 wt%). Photoinduced light scattering data indicate the presence of a LiNbO3:Cu(0,015 wt.%) crystal in the band gap high density of small energy levels that increase the effect of photorefraction and electrical conductivity of the crystal.
引用
收藏
页码:215 / 222
页数:8
相关论文
共 11 条
  • [1] Photonic applications of lithium niobate crystals
    Arizmendi, L
    [J]. PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2004, 201 (02): : 253 - 283
  • [2] INFRARED HOLOGRAPHIC RECORDING IN LINBO3 - CU
    BUSE, K
    JERMANN, F
    KRATZIG, E
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1994, 58 (03): : 191 - 195
  • [3] Optical Properties of Copper-Doped Lithium Niobate Crystals
    Gorelik, V. S.
    Palatnikov, M. N.
    Pyatyshev, A. Yu
    Sidorov, N., V
    Skrabatun, A., V
    [J]. INORGANIC MATERIALS, 2018, 54 (10) : 1013 - 1020
  • [4] Photorefractive parameters of lithium niobate crystals from photoinduced light scattering
    Goulkov, M.
    Imlau, M.
    Woike, Th.
    [J]. PHYSICAL REVIEW B, 2008, 77 (23)
  • [5] Gunter P., 2006, Springer Series in Optical Sciences, V113, P1, DOI [10.1002/pssa.200303911, DOI 10.1002/PSSA.200303911]
  • [6] Pyroelectric and photogalvanic crystal accelerators
    Kukhtarev, N. V.
    Kukhtareva, T. V.
    Stargell, G.
    Wang, J. C.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (01)
  • [7] Maksimenko V. A., 2008, Fotoindutsirovannye protsessy v ktistallakh niobata litiya
  • [8] Sidorov N. V., 2019, Lazernaya konoskopiya i fotoindutsirovannoe rasseyanie sveta v issledovaniyakh svoystv nelineyno-opticheskogo monokristalla niobata litiya
  • [9] DEFECTIVE STRUCTURE AND PHOTOREFRACTIVE PROPERTIES OF DOUBLE DOPED CRYSTALS LiNbO3 : Fe : Mg AND LiNbO3 : Fe : Zn
    Teplyakova, N. A.
    Sidorov, N., V
    Palatnikov, M. N.
    [J]. PHYSICAL AND CHEMICAL ASPECTS OF THE STUDY OF CLUSTERS NANOSTRUCTURES AND NANOMATERIALS, 2018, (10) : 628 - 635
  • [10] Volk T., 2008, Lithium Niobate Defects, Photorefraction and Ferroelectric Switching, DOI [10.1007/978-3-540-70766-0, DOI 10.1007/978-3-540-70766-0]