Quantitative rates of convergence to equilibrium for the degenerate linear Boltzmann equation on the torus

被引:0
作者
Evans, Josephine [1 ]
Moyano, Ivan [2 ]
机构
[1] Univ Warwick, Warwick Math Inst, Zeeman Bldg, Coventry CV4 7AL, England
[2] Univ Nice Sophia Antipolis, LJAD, Nice, France
关键词
KINETIC-EQUATIONS; EXPONENTIAL DECAY; TREND; HYPOCOERCIVITY;
D O I
10.1112/blms.12977
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the linear relaxation Boltzmann equation on the torus with a spatially varying jump rate which can be zero on large sections of the domain. In Bernard and Salvarani (Arch. Ration. Mech. Anal. 208 (2013), no. 3, 977-984), Bernard and Salvarani showed that this equation converges exponentially fast to equilibrium if and only if the jump rate satisfies the geometric control condition of Bardos, Lebeau and Rauch. Han-Kwan and Leautaud showed a more general result for linear Boltzmann equations under the action of potentials in different geometric contexts, including the case of unbounded velocities. In this paper, we obtain quantitative rates of convergence to equilibrium when the geometric control condition is satisfied, using a probabilistic approach based on Doeblin's theorem from Markov chains.
引用
收藏
页码:981 / 1003
页数:23
相关论文
共 31 条
[1]  
[Anonymous], 2016, Contributions to mixing and hypocoercivity in kinetic models
[2]  
Bansaye V., 2019, NON CONSERVATIVE HAR
[3]  
Bansaye V., 2017, ERGODIC BEHAV NON CO
[4]   SHARP SUFFICIENT CONDITIONS FOR THE OBSERVATION, CONTROL, AND STABILIZATION OF WAVES FROM THE BOUNDARY [J].
BARDOS, C ;
LEBEAU, G ;
RAUCH, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (05) :1024-1065
[5]   NEW APPROACH TO NONEQUILIBRIUM PROCESSES [J].
BERGMANN, PG ;
LEBOWITZ, JL .
PHYSICAL REVIEW, 1955, 99 (02) :578-587
[6]   Optimal Estimate of the Spectral Gap for the Degenerate Goldstein-Taylor Model [J].
Bernard, Etienne ;
Salvarani, Francesco .
JOURNAL OF STATISTICAL PHYSICS, 2013, 153 (02) :363-375
[7]   On the exponential decay to equilibrium of the degenerate linear Boltzmann equation [J].
Bernard, Etienne ;
Salvarani, Francesco .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (09) :1934-1954
[8]   On the Convergence to Equilibrium for Degenerate Transport Problems [J].
Bernard, Etienne ;
Salvarani, Francesco .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 208 (03) :977-984
[9]   A necessary and sufficient condition for the exact controllability of the wave equation [J].
Burq, N ;
Gerard, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (07) :749-752
[10]  
Burq N., STABILISATION WAVE E