EESCN: A novel spiking neural network method for EEG-based emotion recognition

被引:25
|
作者
Xu, Feifan [1 ]
Pan, Deng [1 ]
Zheng, Haohao [1 ]
Ouyang, Yu [1 ]
Jia, Zhe [1 ]
Zeng, Hong [1 ,2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou, Zhejiang, Peoples R China
[2] Key Lab Brain Machine Collaborat Zhejiang Prov, Hangzhou, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
Convolutional neural network (CNN); EEG emotion recognition; Neuromorphic; Recurrent neural network (RNN); Spiking neural network (SNN); CLASSIFICATION; OPTIMIZATION;
D O I
10.1016/j.cmpb.2023.107927
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and Objective: Although existing artificial neural networks have achieved good results in electroencephalograph (EEG) emotion recognition, further improvements are needed in terms of bio-interpretability and robustness. In this research, we aim to develop a highly efficient and high-performance method for emotion recognition based on EEG.Methods: We propose an Emo-EEGSpikeConvNet (EESCN), a novel emotion recognition method based on spiking neural network (SNN). It consists of a neuromorphic data generation module and a NeuroSpiking framework. The neuromorphic data generation module converts EEG data into 2D frame format as input to the NeuroSpiking framework, while the NeuroSpiking framework is used to extract spatio-temporal features of EEG for classification.Results: EESCN achieves high emotion recognition accuracies on DEAP and SEED-IV datasets, ranging from 94.56% to 94.81% on DEAP and a mean accuracy of 79.65% on SEED-IV. Compared to existing SNN methods, EESCN significantly improves EEG emotion recognition performance. In addition, it also has the advantages of faster running speed and less memory footprint.Conclusions: EESCN has shown excellent performance and efficiency in EEG-based emotion recognition with potential for practical applications requiring portability and resource constraints.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] EEG-based emotion recognition systems; comprehensive study
    Hamzah, Hussein Ali
    Abdalla, Kasim K.
    HELIYON, 2024, 10 (10)
  • [32] Research Progress of EEG-Based Emotion Recognition: A Survey
    Wang, Yiming
    Zhang, Bin
    Di, Lamei
    ACM COMPUTING SURVEYS, 2024, 56 (11)
  • [33] An approach to EEG-based emotion recognition using combined feature extraction method
    Zhang, Yong
    Ji, Xiaomin
    Zhang, Suhua
    NEUROSCIENCE LETTERS, 2016, 633 : 152 - 157
  • [34] A novel transferability attention neural network model for EEG emotion recognition
    Li, Yang
    Fu, Boxun
    Li, Fu
    Shi, Guangming
    Zheng, Wenming
    NEUROCOMPUTING, 2021, 447 : 92 - 101
  • [35] Using Black Hole Algorithm to Improve EEG-Based Emotion Recognition
    Munoz, Roberto
    Olivares, Rodrigo
    Taramasco, Carla
    Villarroel, Rodolfo
    Soto, Ricardo
    Barcelos, Thiago S.
    Merino, Erick
    Francisca Alonso-Sanchez, Maria
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2018, 2018
  • [36] EEG-based emotion recognition using simple recurrent units network and ensemble learning
    Wei, Chen
    Chen, Lan-lan
    Song, Zhen-zhen
    Lou, Xiao-guang
    Li, Dong-dong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 58
  • [37] Directional Spatial and Spectral Attention Network (DSSA Net) for EEG-based emotion recognition
    Liu, Jiyao
    He, Lang
    Chen, Haifeng
    Jiang, Dongmei
    FRONTIERS IN NEUROROBOTICS, 2025, 18
  • [38] EEG-Based Emotion Recognition Using Convolutional Recurrent Neural Network with Multi-Head Self-Attention
    Hu, Zhangfang
    Chen, Libujie
    Luo, Yuan
    Zhou, Jingfan
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [39] A novel deep learning model based on the ICA and Riemannian manifold for EEG-based emotion recognition
    Wu, Minchao
    Hu, Shiang
    Wei, Bing
    Lv, Zhao
    JOURNAL OF NEUROSCIENCE METHODS, 2022, 378
  • [40] Emotion Recognition and Understanding Using EEG Data in A Brain-Inspired Spiking Neural Network Architecture
    Alzhrani, Wael
    Doborjeh, Maryam
    Doborjeh, Zohreh
    Kasabov, Nikola
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,