EESCN: A novel spiking neural network method for EEG-based emotion recognition

被引:25
|
作者
Xu, Feifan [1 ]
Pan, Deng [1 ]
Zheng, Haohao [1 ]
Ouyang, Yu [1 ]
Jia, Zhe [1 ]
Zeng, Hong [1 ,2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou, Zhejiang, Peoples R China
[2] Key Lab Brain Machine Collaborat Zhejiang Prov, Hangzhou, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
Convolutional neural network (CNN); EEG emotion recognition; Neuromorphic; Recurrent neural network (RNN); Spiking neural network (SNN); CLASSIFICATION; OPTIMIZATION;
D O I
10.1016/j.cmpb.2023.107927
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and Objective: Although existing artificial neural networks have achieved good results in electroencephalograph (EEG) emotion recognition, further improvements are needed in terms of bio-interpretability and robustness. In this research, we aim to develop a highly efficient and high-performance method for emotion recognition based on EEG.Methods: We propose an Emo-EEGSpikeConvNet (EESCN), a novel emotion recognition method based on spiking neural network (SNN). It consists of a neuromorphic data generation module and a NeuroSpiking framework. The neuromorphic data generation module converts EEG data into 2D frame format as input to the NeuroSpiking framework, while the NeuroSpiking framework is used to extract spatio-temporal features of EEG for classification.Results: EESCN achieves high emotion recognition accuracies on DEAP and SEED-IV datasets, ranging from 94.56% to 94.81% on DEAP and a mean accuracy of 79.65% on SEED-IV. Compared to existing SNN methods, EESCN significantly improves EEG emotion recognition performance. In addition, it also has the advantages of faster running speed and less memory footprint.Conclusions: EESCN has shown excellent performance and efficiency in EEG-based emotion recognition with potential for practical applications requiring portability and resource constraints.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] EEG-Based BCI Emotion Recognition: A Survey
    Torres, Edgar P.
    Torres, Edgar A.
    Hernandez-Alvarez, Myriam
    Yoo, Sang Guun
    SENSORS, 2020, 20 (18) : 1 - 36
  • [22] Data Augmentation for EEG-Based Emotion Recognition with Deep Convolutional Neural Networks
    Wang, Fang
    Zhong, Sheng-hua
    Peng, Jianfeng
    Jiang, Jianmin
    Liu, Yan
    MULTIMEDIA MODELING, MMM 2018, PT II, 2018, 10705 : 82 - 93
  • [23] A GPSO-optimized convolutional neural networks for EEG-based emotion recognition
    Gao, Zhongke
    Li, Yanli
    Yang, Yuxuan
    Wang, Xinmin
    Dong, Na
    Chiang, Hsiao-Dong
    NEUROCOMPUTING, 2020, 380 (380) : 225 - 235
  • [24] Optimized Echo State Network with Intrinsic Plasticity for EEG-Based Emotion Recognition
    Fourati, Rahma
    Ammar, Boudour
    Aouiti, Chaouki
    Sanchez-Medina, Javier
    Alimi, Adel M.
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 718 - 727
  • [25] EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network
    Cui, Heng
    Liu, Aiping
    Zhang, Xu
    Chen, Xiang
    Wang, Kongqiao
    Chen, Xun
    KNOWLEDGE-BASED SYSTEMS, 2020, 205
  • [26] CONVOLUTIONAL NEURAL NETWORK APPROACH FOR EEG-BASED EMOTION RECOGNITION USING BRAIN CONNECTIVITY AND ITS SPATIAL INFORMATION
    Moon, Seong-Eun
    Jang, Soobeom
    Lee, Jong-Seok
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2556 - 2560
  • [27] Depression Assessment Method: An EEG Emotion Recognition Framework Based on Spatiotemporal Neural Network
    Chang, Hongli
    Zong, Yuan
    Zheng, Wenming
    Tang, Chuangao
    Zhu, Jie
    Li, Xuejun
    FRONTIERS IN PSYCHIATRY, 2022, 12
  • [28] EEG-based mild depression recognition using convolutional neural network
    Xiaowei Li
    Rong La
    Ying Wang
    Junhong Niu
    Shuai Zeng
    Shuting Sun
    Jing Zhu
    Medical & Biological Engineering & Computing, 2019, 57 : 1341 - 1352
  • [29] EEGSNet: A novel EEG cognitive recognition model using spiking neural network
    Shi, Jiankai
    Zhao, Yue
    Wang, Chu
    Zeng, Hong
    Dai, Guojun
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 105
  • [30] EEG-based mild depression recognition using convolutional neural network
    Li, Xiaowei
    La, Rong
    Wang, Ying
    Niu, Junhong
    Zeng, Shuai
    Sun, Shuting
    Zhu, Jing
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2019, 57 (06) : 1341 - 1352