On a weighted Adams type inequality and an application to a biharmonic equation

被引:2
作者
de Souza, Manasses [1 ]
Severo, Uberlandio [1 ]
Maria Silva, Lorena [1 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
关键词
Adams inequality; critical growth; higher order elliptic equations; variational methods; NONLINEAR SCHRODINGER-EQUATIONS; MOSER TYPE INEQUALITY; CRITICAL GROWTH; NONTRIVIAL SOLUTIONS; EXTREMAL-FUNCTIONS; ELLIPTIC EQUATION; UNBOUNDED-DOMAINS; BI-LAPLACIAN; SHARP FORM; TRUDINGER;
D O I
10.1002/mma.9676
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with an improvement of a class of Adams type inequalities involving potentials V$$ V $$ and weights K$$ K $$, which can decay to zero at infinity as (1+|x|& alpha;)-1$$ {\left(1+{\left & VERBAR;x\right & VERBAR;} circumflex {\alpha}\right)} circumflex {-1} $$, & alpha;& ISIN;(0,4)$$ \alpha \in \left(0,4\right) $$, and (1+|x|& beta;)-1$$ {\left(1+{\left & VERBAR;x\right & VERBAR;} circumflex {\beta}\right)} circumflex {-1} $$, & beta;& ISIN;[& alpha;,+& INFIN;)$$ \beta \in \left[\alpha, +\infty \right) $$, respectively. As an application of this result and by using minimax methods, we establish the existence of solutions for the following class of problems: & UDelta;2u-& UDelta;u+V(x)u=K(x)f(x,u)inDouble-struck capital R4,$$ {\Delta} circumflex 2u-\Delta u+V(x)u equal to K(x)f\left(x,u\right)\kern0.30em \mathrm{in}\kern0.30em {\mathrm{\mathbb{R}}} circumflex 4, $$where the nonlinear term f(x,u)$$ f\left(x,u\right) $$ can have critical exponential growth. Furthermore, when & alpha;& ISIN;(0,2)$$ \alpha \in \left(0,2\right) $$ we prove that the solutions belong to the Sobolev space H2Double-struck capital R4$$ {H} circumflex 2\left({\mathrm{\mathbb{R}}} circumflex 4\right) $$ (bound state solutions).
引用
收藏
页码:680 / 706
页数:27
相关论文
共 50 条
[41]   Adams inequality with exact growth in the hyperbolic space H4 and Lions lemma [J].
Karmakar, Debabrata .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (05)
[42]   MULTIPLE SOLUTIONS FOR A SINGULAR NONHOMOGENOUS BIHARMONIC EQUATION IN HEISENBERG GROUP [J].
Deng, Shengbing ;
Yu, Fang .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, :488-507
[43]   Concentration-compactness principle for an inequality by D. Adams [J].
do O, Joao Marcos ;
Macedo, Abiel Costa .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 51 (1-2) :195-215
[44]   Multiple Solutions to p-Biharmonic Equations of Kirchhoff Type with Vanishing Potential [J].
Chung, N. T. ;
Ghanmi, A. ;
Kenzizi, T. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (03) :202-220
[45]   Ground state solution to the biharmonic equation [J].
Feng, Zhaosheng ;
Su, Yu .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01)
[46]   BIHARMONIC-KIRCHHOFF TYPE EQUATION INVOLVING CRITICAL SOBOLEV EXPONENT WITH SINGULAR TERM [J].
Tahri, Kamel ;
Yazid, Fares .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 36 (02) :247-256
[47]   Adams' Inequality with the Exact Growth Condition in R4 [J].
Masmoudi, Nader ;
Sani, Federica .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (08) :1307-1335
[48]   Sharp Adams type inequalities in Lorentz-Sobole space [J].
Wang, Guanglan ;
Wu, Yan ;
Li, Guoliang .
AIMS MATHEMATICS, 2023, 8 (09) :22192-22206
[49]   Adams-Onofri Inequality with Logarithmic Weight and the Associated Mean Field Si-Harmonic Equation [J].
Ma, Pan ;
Zhu, Maochun .
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2024, 37 (04) :417-426
[50]   A SOBOLEV-HARDY INEQUALITY WITH APPLICATION TO A NONLINEAR ELLIPTIC EQUATION [J].
Xie Chaodong (Dept. of Economic and Management .
Annals of Differential Equations, 2006, (01) :69-74