Comparison between Supervised and Self-supervised Deep Learning for SEM Image Denoising

被引:2
|
作者
Okud, Tomoyuki [1 ]
Chen, Jun [1 ]
Motoyoshi, Takahiro [1 ]
Yumiba, Ryou [1 ]
Ishikawa, Masayoshi [2 ]
Toyoda, Yasutaka [1 ]
机构
[1] Hitachi High Tech Corp, Harumi Triton Sq Off Tower X 31F I-8-10Harumi,Ch, Tokyo 1046031, Japan
[2] Hitachi Ltd, 7-1-1 Omika, Hitachi, Ibaraki 3191292, Japan
关键词
metrology; measurement; SEM; deep-learning; AI; inspection; denoise;
D O I
10.1117/12.2660673
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accompanying the micro-fabrication and the complexity of the semiconductor manufacturing process, measurement and inspection using a scanning electron microscope (SEM) have become increasingly important for semiconductor manufacturing. To photograph high signa-to-noise ratio (SNR) images for precise measurement and precise inspection, conventional methods must reduce the noise by accumulating multiple low SNR images irradiated by an electron beam at the same point multiple times. However, such multiple irradiations increase sample damage and measurement and inspection turnaround time. To accelerate the turnaround time and improve performance of measurement and inspection using advanced image processing, we evaluated deep learning-based denoising algorithms that show significant denoising performance compared to the conventional method. Both supervised and self-supervised learning are mainstream deep learning denoising algorithms. The former requires advance preparation of high SNR images, unlike the latter. However, SEM can acquire higher SNR images by averaging more frames. In addition, the cost of acquisition of the training images can be ignored in the fabrication process when the number of training image sets is small. Therefore, in this study, we trained several supervised and self-supervised learning methods on a small dataset comprising hundreds of images and compared their results. The denoising performance for low SNR SEM images of semiconductor circuits was compared using peak signal-to-noise ratio (PSNR), similarity index measure (SSIM), image contrast, and critical distance (CD) values. The results showed that supervised learning achieved higher performance. In addition, we propose a new framework that conducts CD measurements using high SNR images during training and feeds the results back into the model optimization for supervised training. The results showed that the proposed method has potential to improve many metrics.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Self-Supervised Learning for Seismic Data Reconstruction and Denoising
    Meng, Fanlei
    Fan, QinYin
    Li, Yue
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [32] Self-supervised learning for effective denoising of flow fields
    Yu, Linqi
    Yousif, Mustafa Z.
    Zhou, Dan
    Zhang, Meng
    Lee, Jung Sub
    Lim, Hee-Chang
    PHYSICS OF FLUIDS, 2024, 36 (10)
  • [33] Self-supervised learning for denoising of multidimensional MRI data
    Kang, Beomgu
    Lee, Wonil
    Seo, Hyunseok
    Heo, Hye-Young
    Park, Hyunwook
    MAGNETIC RESONANCE IN MEDICINE, 2024, 92 (05) : 1980 - 1994
  • [34] Self-supervised learning for denoising quasiparticle interference data
    Kuijf, Ilse S.
    Tromp, Willem O.
    Benschop, Tjerk
    Ramones, Nino Philip
    Sulangi, Miguel Antonio
    van Nieuwenburg, Evert P. L.
    Allan, Milan P.
    PHYSICAL REVIEW B, 2025, 111 (03)
  • [35] Deep Self-Supervised Hyperspectral Image Reconstruction
    Liu, Zhe
    Han, Xian-Hua
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (03)
  • [36] Self2Self With Dropout: Learning Self-Supervised Denoising From Single Image
    Quan, Yuhui
    Chen, Mingqin
    Pang, Tongyao
    Ji, Hui
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1887 - 1895
  • [37] Self-Supervised Denoising Image Filter Based on Recursive Deep Neural Network Structure
    Kang, Changhee
    Kang, Sang-ug
    SENSORS, 2021, 21 (23)
  • [38] CWAN: Self-supervised learning for deep grape disease image composition
    Jin, Haibin
    Chu, Xiaoquan
    Qi, Jianfang
    Zhang, Xinxin
    Mu, Weisong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [39] A Self-Supervised Denoising Method Based on Deep Noise Estimation
    Lin, Hongbo
    Sun, Fuyao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [40] A Self-Supervised Denoising Method Based on Deep Noise Estimation
    Lin, Hongbo
    Sun, Fuyao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20