Comparison between Supervised and Self-supervised Deep Learning for SEM Image Denoising

被引:2
作者
Okud, Tomoyuki [1 ]
Chen, Jun [1 ]
Motoyoshi, Takahiro [1 ]
Yumiba, Ryou [1 ]
Ishikawa, Masayoshi [2 ]
Toyoda, Yasutaka [1 ]
机构
[1] Hitachi High Tech Corp, Harumi Triton Sq Off Tower X 31F I-8-10Harumi,Ch, Tokyo 1046031, Japan
[2] Hitachi Ltd, 7-1-1 Omika, Hitachi, Ibaraki 3191292, Japan
来源
METROLOGY, INSPECTION, AND PROCESS CONTROL XXXVII | 2023年 / 12496卷
关键词
metrology; measurement; SEM; deep-learning; AI; inspection; denoise;
D O I
10.1117/12.2660673
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accompanying the micro-fabrication and the complexity of the semiconductor manufacturing process, measurement and inspection using a scanning electron microscope (SEM) have become increasingly important for semiconductor manufacturing. To photograph high signa-to-noise ratio (SNR) images for precise measurement and precise inspection, conventional methods must reduce the noise by accumulating multiple low SNR images irradiated by an electron beam at the same point multiple times. However, such multiple irradiations increase sample damage and measurement and inspection turnaround time. To accelerate the turnaround time and improve performance of measurement and inspection using advanced image processing, we evaluated deep learning-based denoising algorithms that show significant denoising performance compared to the conventional method. Both supervised and self-supervised learning are mainstream deep learning denoising algorithms. The former requires advance preparation of high SNR images, unlike the latter. However, SEM can acquire higher SNR images by averaging more frames. In addition, the cost of acquisition of the training images can be ignored in the fabrication process when the number of training image sets is small. Therefore, in this study, we trained several supervised and self-supervised learning methods on a small dataset comprising hundreds of images and compared their results. The denoising performance for low SNR SEM images of semiconductor circuits was compared using peak signal-to-noise ratio (PSNR), similarity index measure (SSIM), image contrast, and critical distance (CD) values. The results showed that supervised learning achieved higher performance. In addition, we propose a new framework that conducts CD measurements using high SNR images during training and feeds the results back into the model optimization for supervised training. The results showed that the proposed method has potential to improve many metrics.
引用
收藏
页数:9
相关论文
共 8 条
  • [1] [Anonymous], 2011, 202 ISO TC
  • [2] Attota R., 2021, INT ROADMAP DEVICES
  • [3] Image denoising by sparse 3-D transform-domain collaborative filtering
    Dabov, Kostadin
    Foi, Alessandro
    Katkovnik, Vladimir
    Egiazarian, Karen
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) : 2080 - 2095
  • [4] FAST NON-LOCAL ALGORITHM FOR IMAGE DENOISING
    Karnati, Venkateswarlu
    Uliyar, Mithun
    Dey, Sumit
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 3873 - 3876
  • [5] Noise2Void-Learning Denoising from Single Noisy Images
    Krull, Alexander
    Buchholz, Tim-Oliver
    Jug, Florian
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2124 - 2132
  • [6] Lehtinen J, 2018, PR MACH LEARN RES, V80
  • [7] Scanning Electron Microscope Image Signal-to-Noise Ratio Monitoring for Micro-Nanomanipulation
    Marturi, Naresh
    Dembele, Sounkalo
    Piat, Nadine
    [J]. SCANNING, 2014, 36 (04) : 419 - 429
  • [8] Zijian D., 2022, METROLOGY INSPECTION, V2053, P60