Template-free synthesis of M/g-C3N4 (M = Cu, Mn, and Fe) porous one-dimensional nanostructures for green hydrogen production

被引:57
作者
Abdelgawad, Ahmed [1 ,2 ]
Salah, Belal [1 ,2 ]
Lu, Qingqing [3 ]
Abdullah, Aboubakr M. [1 ]
Chitt, Mira [4 ]
Ghanem, Alaa [5 ]
Al-Hajri, Rashid S. [6 ]
Eid, Kamel [2 ]
机构
[1] Qatar Univ, Ctr Adv Mat, Doha, Qatar
[2] Qatar Univ, Coll Engn, Gas Proc Ctr, Doha, Qatar
[3] Qilu Univ Technol, Shandong Acad Sci, Engn & Technol Ctr Electrochem, Sch Chem & Chem Engn, Jinan, Peoples R China
[4] Global Coll Engn & Technol GCET, POB 2546, Cpo Ruwi 112, Oman
[5] Egyptian Petr Res Inst, Prod Dept, PVT lab, Cairo 11727, Egypt
[6] Sultan Qaboos Univ, Petr & Chem Engn Dept, Muscat 50, Oman
关键词
Green hydrogen production; Hydrogen evolution; Electrocatalyst; G-C3N4; NANOSHEETS; RATIONAL SYNTHESIS; EVOLUTION; CARBON; REDUCTION; ELECTROCATALYSTS; EXFOLIATION; CATALYSTS; WATER;
D O I
10.1016/j.jelechem.2023.117426
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Herein, we synthesized porous one-dimensional graphitic carbon nitride (g-C3N4) doped atomically with metal atoms (M/g-C3N4) (M = Cu, Mn, and Fe) for the electrochemical and photo-electrochemical hydrogen evolution reaction (HER). This is driven by the direct acidification of an aqueous solution of metal precursors and melamine followed by pyrolysis at 550 degrees C under N2. The as-obtained M/g-C3N4 had well-defined pore sizes (5-10 nm), nanofibers (90 +/- 5 nm in width and 5 +/- 1 mu m in length) morphology, high surface area, and M atomic contents (1.7 +/- 0.2 wt.%). The HER performance is in the order of Cu/g-C3N4 > Fe/gC3N4 > Mn/g-C3N4 in terms of the overpotential, onset potential, H2 production rate, and mass/specific activity. Notably, Cu/g-C3N4 achieved turnover frequency (TOF) close to that of commercial 10 wt.% Pt/C, but higher mass/specific activity and great H2 production rate of (222.15 mu mol center dot g-1 center dot h-1). This work open the doorway for the utilization of g-C3N4 doped metal-atoms at low content in electrocatalytic and photocatalytic HER.
引用
收藏
页数:11
相关论文
共 66 条
[1]  
Abdu HI, 2020, GREEN CHEM, V22, P5437, DOI [10.1039/D0GC01561J, 10.1039/d0gc01561j]
[2]   Hydrogen fuel and transport system: A sustainable and environmental future [J].
Ahmed, Adeel ;
Al-Amin, Abul Quasern ;
Ambrose, Angelina F. ;
Saidur, R. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (03) :1369-1380
[3]  
Ahsan M.A., J AM CHEM SOC
[4]  
Ahsan M.A., ACS APPL MATER INTER
[5]   Tuning the Intermolecular Electron Transfer of Low-Dimensional and Metal-Free BCN/C60 Electrocatalysts via Interfacial Defects for Efficient Hydrogen and Oxygen Electrochemistry [J].
Ahsan, Md Ariful ;
He, Tianwei ;
Eid, Kamel ;
Abdullah, Aboubakr M. ;
Curry, Michael L. ;
Du, Aijun ;
Santiago, Alain R. Puente ;
Echegoyen, Luis ;
Noveron, Juan C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (02) :1203-1215
[6]   The role of the Pd ratio in increasing the activity of Pt for high efficient hydrogen evolution reaction [J].
Aykut, Yasemin ;
Yurtcan, Ayse Bayrakceken .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 921
[7]   Combined soft templating with thermal exfoliation toward synthesis of porous g-C3N4 nanosheets for improved photocatalytic hydrogen evolution [J].
Chen, Yushuai ;
Yang, Bo ;
Xie, Wenyu ;
Zhao, Xueying ;
Wang, Zhuan ;
Su, Xintai ;
Yang, Chao .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 13 (13) :301-310
[8]   Hydrogen production for energy: An overview [J].
Dawood, Furat ;
Anda, Martin ;
Shafiullah, G. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (07) :3847-3869
[9]   Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution [J].
Du, Huitong ;
Kong, Rong-Mei ;
Guo, Xiaoxi ;
Qu, Fengli ;
Li, Jinghong .
NANOSCALE, 2018, 10 (46) :21617-21624
[10]   Investigation on M@CuOx/C (M=Ru, Rh, Pd and Pt) catalysts prepared by galvanic reduction for hydrogen evolution from ammonia borane [J].
Duan, Ying ;
Guo, Pan ;
Sui, Dong ;
Deng, Dongsheng ;
Lu, Tianliang ;
Yang, Yanliang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (85) :36098-36109