Prediction of Research Project Execution using Data Augmentation and Deep Learning

被引:1
作者
Flores, Anibal [1 ]
Tito-Chura, Hugo [1 ]
Zea-Rospigliosi, Lissethe [2 ]
机构
[1] Univ Nacl Moquegua, GIIA Res Grp Artificial Intelligence, Moquegua, Peru
[2] Univ Nacl Jorge Basadre Grohmann, Doctorate Educ, Tacna, Peru
来源
INTELIGENCIA ARTIFICIAL-IBEROAMERICAN JOURNAL OF ARTIFICIAL INTELLIGENCE | 2023年 / 26卷 / 71期
关键词
Research project execution; data augmentation; deep learning; nominal features;
D O I
10.4114/intartif.vol26iss71pp46-58
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the results of seven deep learning models for prediction of research project execution in graduates from a public university in Peru. The deep learning models implemented are non-hybrid: Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional Neural Networks (CNN) and, hybrid: CNN+GRU, CNN+ LSTM and LSTM+GRU. Since most of the dataset prediction features are of the nominal type (true or false), this paper proposes a simple novel data augmentation technique for this type of features. Taking as inspiration the input data type of a neural network, the proposal data augmentation technique considers nominal features as numeric, and obtain random values close to them to generate synthetic records. The results show that most of deep learning models with data augmentation significantly outperform models with just class balancing in terms of accuracy, precision, f1-score and specificity, being the main improvements of 17.39%, 80.00%, 25.00% and 20.00% respectively.
引用
收藏
页码:46 / 58
页数:13
相关论文
共 32 条
[1]   A Deep Bidirectional LSTM-GRU Network Model for Automated Ciphertext Classification [J].
Ahmadzadeh, Ezat ;
Kim, Hyunil ;
Jeong, Ongee ;
Kim, Namki ;
Moon, Inkyu .
IEEE ACCESS, 2022, 10 :3228-3237
[2]   Deep transfer learning for alzheimer neurological disorder detection [J].
Ashraf, Abida ;
Naz, Saeeda ;
Shirazi, Syed Hamad ;
Razzak, Imran ;
Parsad, Mukesh .
MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (20) :30117-30142
[3]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[4]  
Djerioui M., 2020, 2020 INT C EL ENG IC, P1, DOI [10.1109/ICEE49691.2020.9249935, DOI 10.1109/ICEE49691.2020.9249935]
[5]   The overlapping effect and fusion protocols of data augmentation techniques in iris PAD [J].
Fang, Meiling ;
Damer, Naser ;
Boutros, Fadi ;
Kirchbuchner, Florian ;
Kuijper, Arjan .
MACHINE VISION AND APPLICATIONS, 2022, 33 (01)
[6]  
Feng SY, 2021, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, P968
[7]   Data Augmentation for Short-Term Time Series Prediction with Deep Learning [J].
Flores, Anibal ;
Tito-Chura, Hugo ;
Apaza-Alanoca, Honorio .
INTELLIGENT COMPUTING, VOL 2, 2021, 284 :492-506
[8]  
Ginting E. S., 2021, J TARB, V27, DOI [10.30829/tar.v27i2.843, DOI 10.30829/TAR.V27I2.843]
[9]  
INEI, 2015, ENC NAC EGR U
[10]  
Ioffe S., 2015, 32 INT C MACHINE LEA, V1