A Multi-Attention Approach for Person Re-Identification Using Deep Learning

被引:10
|
作者
Saber, Shimaa [1 ]
Meshoul, Souham [2 ]
Amin, Khalid [1 ]
Plawiak, Pawel [3 ,4 ]
Hammad, Mohamed [1 ]
机构
[1] Menoufia Univ, Fac Comp & Informat, Informat Technol Dept, Shibin Al Kawm 32511, Egypt
[2] Princess Nourah bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Technol, POB 84428, Riyadh 11671, Saudi Arabia
[3] Cracow Univ Technol, Fac Comp Sci & Telecommun, Dept Comp Sci, Warszawska 24, PL-31155 Krakow, Poland
[4] Polish Acad Sci, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
关键词
ECA; deep learning; PAM; person re-identification; multi-attention; NETWORK; REPRESENTATION;
D O I
10.3390/s23073678
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Person re-identification (Re-ID) is a method for identifying the same individual via several non-interfering cameras. Person Re-ID has been felicitously applied to an assortment of computer vision applications. Due to the emergence of deep learning algorithms, person Re-ID techniques, which often involve the attention module, have gained remarkable success. Moreover, people's traits are mostly similar, which makes distinguishing between them complicated. This paper presents a novel approach for person Re-ID, by introducing a multi-part feature network, that combines the position attention module (PAM) and the efficient channel attention (ECA). The goal is to enhance the accuracy and robustness of person Re-ID methods through the use of attention mechanisms. The proposed multi-part feature network employs the PAM to extract robust and discriminative features by utilizing channel, spatial, and temporal context information. The PAM learns the spatial interdependencies of features and extracts a greater variety of contextual information from local elements, hence enhancing their capacity for representation. The ECA captures local cross-channel interaction and reduces the model's complexity, while maintaining accuracy. Inclusive experiments were executed on three publicly available person Re-ID datasets: Market-1501, DukeMTMC, and CUHK-03. The outcomes reveal that the suggested method outperforms existing state-of-the-art methods, and the rank-1 accuracy can achieve 95.93%, 89.77%, and 73.21% in trials on the public datasets Market-1501, DukeMTMC-reID, and CUHK03, respectively, and can reach 96.41%, 94.08%, and 91.21% after re-ranking. The proposed method demonstrates a high generalization capability and improves both quantitative and qualitative performance. Finally, the proposed multi-part feature network, with the combination of PAM and ECA, offers a promising solution for person Re-ID, by combining the benefits of temporal, spatial, and channel information. The results of this study evidence the effectiveness and potential of the suggested method for person Re-ID in computer vision applications.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Multi-receptive field attention for person re-identification
    Zhixiong Wu
    Jianqing Zhu
    Multimedia Tools and Applications, 2023, 82 : 20621 - 20639
  • [32] Multi-Branch Person Re-Identification Basedon Multi-Scale Attention
    Cong, Li
    Min, Jiang
    Jun, Kong
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (20)
  • [33] Discriminative Feature Learning With Foreground Attention for Person Re-Identification
    Zhou, Sanping
    Wang, Jinjun
    Meng, Deyu
    Liang, Yudong
    Gong, Yihong
    Zheng, Nanning
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (09) : 4671 - 4684
  • [34] Attention-aware scoring learning for person re-identification
    Zhang, Miaohui
    Xin, Ming
    Gao, Chengcheng
    Wang, Xile
    Zhang, Sihan
    KNOWLEDGE-BASED SYSTEMS, 2020, 203
  • [35] A state-of-the-art review on person re-identification with deep learning
    Gao, Peng
    Yue, Xiao
    Chen, Wei
    Fang, Weidong
    Tian, Zijian
    Zhang, Fan
    INTERNATIONAL JOURNAL OF AD HOC AND UBIQUITOUS COMPUTING, 2022, 41 (02) : 69 - 91
  • [36] PERSON RE-IDENTIFICATION USING VISUAL ATTENTION
    Rahimpour, Alireza
    Liu, Liu
    Taalimi, Ali
    Song, Yang
    Qi, Hairong
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4242 - 4246
  • [37] An Improved Deep Mutual-Attention Learning Model for Person Re-Identification
    Jamal, Miftah Bedru
    Jiang Zhengang
    Ming, Fang
    SYMMETRY-BASEL, 2020, 12 (03):
  • [38] Leader-Based Multi-Scale Attention Deep Architecture for Person Re-Identification
    Qian, Xuelin
    Fu, Yanwei
    Xiang, Tao
    Jiang, Yu-Gang
    Xue, Xiangyang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (02) : 371 - 385
  • [39] Multi-layer attention for person re-identification
    Zhang, Yuele
    Guo, Jie
    Huang, Zheng
    Qiu, Weidong
    Fan, Hexiaohui
    2018 INTERNATIONAL JOINT CONFERENCE ON METALLURGICAL AND MATERIALS ENGINEERING (JCMME 2018), 2019, 277
  • [40] Person re-identification using prioritized chromatic texture (PCT) with deep learning
    K. Jayapriya
    I. Jeena Jacob
    N. Ani Brown Mary
    Multimedia Tools and Applications, 2020, 79 : 29399 - 29410