Multi-task learning-based histologic subtype classification of non-small cell lung cancer

被引:11
作者
Chen, Kun [1 ,2 ]
Wang, Manning [1 ,2 ]
Song, Zhijian [1 ,2 ]
机构
[1] Fudan Univ, Digital Med Res Ctr, Sch Basic Med Sci, Shanghai 200032, Peoples R China
[2] Shanghai Key Lab Med Imaging Comp & Comp Assisted, Shanghai 200032, Peoples R China
来源
RADIOLOGIA MEDICA | 2023年 / 128卷 / 05期
基金
中国国家自然科学基金;
关键词
Computed tomography; Non-small cell lung cancer; Deep learning; Multi-task learning; RADIOMICS;
D O I
10.1007/s11547-023-01621-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeIn clinical applications, accurate histologic subtype classification of lung cancer is important for determining appropriate treatment plans. The purpose of this paper is to evaluate the role of multi-task learning in the classification of adenocarcinoma and squamous cell carcinoma.Material and methodsIn this paper, we propose a novel multi-task learning model for histologic subtype classification of non-small cell lung cancer based on computed tomography (CT) images. The model consists of a histologic subtype classification branch and a staging branch, which share a part of the feature extraction layers and are simultaneously trained. By optimizing on the two tasks simultaneously, our model could achieve high accuracy in histologic subtype classification of non-small cell lung cancer without relying on physician's precise labeling of tumor areas. In this study, 402 cases from The Cancer Imaging Archive (TCIA) were used in total, and they were split into training set (n = 258), internal test set (n = 66) and external test set (n = 78).ResultsCompared with the radiomics method and single-task networks, our multi-task model could reach an AUC of 0.843 and 0.732 on internal and external test set, respectively. In addition, multi-task network can achieve higher accuracy and specificity than single-task network.ConclusionCompared with the radiomics methods and single-task networks, our multi-task learning model could improve the accuracy of histologic subtype classification of non-small cell lung cancer by sharing network layers, which no longer relies on the physician's precise labeling of lesion regions and could further reduce the manual workload of physicians.
引用
收藏
页码:537 / 543
页数:7
相关论文
共 24 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   A radiogenomic dataset of non-small cell lung cancer [J].
Bakr, Shaimaa ;
Gevaert, Olivier ;
Echegaray, Sebastian ;
Ayers, Kelsey ;
Zhou, Mu ;
Shafiq, Majid ;
Zheng, Hong ;
Benson, Jalen Anthony ;
Zhang, Weiruo ;
Leung, Ann N. C. ;
Kadoch, Michael ;
Hoang, Chuong D. ;
Shrager, Joseph ;
Quon, Andrew ;
Rubin, Daniel L. ;
Plevritis, Sylvia K. ;
Napel, Sandy .
SCIENTIFIC DATA, 2018, 5
[3]   Multitask learning [J].
Caruana, R .
MACHINE LEARNING, 1997, 28 (01) :41-75
[4]   Deep learning classification of lung cancer histology using CT images [J].
Chaunzwa, Tafadzwa L. ;
Hosny, Ahmed ;
Xu, Yiwen ;
Shafer, Andrea ;
Diao, Nancy ;
Lanuti, Michael ;
Christiani, David C. ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
SCIENTIFIC REPORTS, 2021, 11 (01)
[5]   Radiomics: an overview in lung cancer management-a narrative review [J].
Chen, Bojiang ;
Yang, Lan ;
Zhang, Rui ;
Luo, Wenxin ;
Li, Weimin .
ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (18)
[6]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[7]   Non-Small Cell Lung Cancer, Version 2.2021 Featured Updates to the NCCN Guidelines [J].
Ettinger, David S. ;
Wood, Douglas E. ;
Aisner, Dara L. ;
Akerley, Wallace ;
Bauman, Jessica R. ;
Bharat, Ankit ;
Bruno, Debora S. ;
Chang, Joe Y. ;
Chirieac, Lucian R. ;
D'Amico, Thomas A. ;
Dilling, Thomas J. ;
Dowell, Jonathan ;
Gettinger, Scott ;
Gubens, Matthew A. ;
Hegde, Aparna ;
Hennon, Mark ;
Lackner, Rudy P. ;
Lanuti, Michael ;
Leal, Ticiana A. ;
Lin, Jules ;
Loo, Billy W., Jr. ;
Lovly, Christine M. ;
Martins, Renato G. ;
Massarelli, Erminia ;
Morgensztern, Daniel ;
Ng, Thomas ;
Otterson, Gregory A. ;
Patel, Sandip P. ;
Riely, Gregory J. ;
Schild, Steven E. ;
Shapiro, Theresa A. ;
Singh, Aditi P. ;
Stevenson, James ;
Tam, Alda ;
Yanagawa, Jane ;
Yang, Stephen C. ;
Gregory, Kristina M. ;
Hughes, Miranda .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2021, 19 (03) :254-266
[8]   Radiomics as a personalized medicine tool in lung cancer: Separating the hope from the hype [J].
Fornacon-Wood, Isabella ;
Faivre-Finn, Corinne ;
O'Connor, James P. B. ;
Price, Gareth J. .
LUNG CANCER, 2020, 146 :197-208
[9]   Histologic subtype classification of non-small cell lung cancer using PET/CT images [J].
Han, Yong ;
Ma, Yuan ;
Wu, Zhiyuan ;
Zhang, Feng ;
Zheng, Deqiang ;
Liu, Xiangtong ;
Tao, Lixin ;
Liang, Zhigang ;
Yang, Zhi ;
Li, Xia ;
Huang, Jian ;
Guo, Xiuhua .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (02) :350-360
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778