Elevation of artemisinin content by co-transformation of artemisinin biosynthetic pathway genes and trichome-specific transcription factors in Artemisia annua

被引:14
作者
Hassani, Danial [1 ,2 ]
Taheri, Ayat [1 ]
Fu, Xueqing [1 ]
Qin, Wei [1 ]
Hang, Liu [1 ]
Ma, Yanan [1 ]
Tang, Kexuan [1 ]
机构
[1] Shanghai Jiao Tong Univ, Fudan SJTU Nottingham Plant Biotechnol R&D Ctr, Sch Agr & Biol, Frontiers Sci Ctr Transformat Mol,Joint Int Res La, Shanghai, Peoples R China
[2] East China Normal Univ, Sch Life Sci, Shanghai, Peoples R China
基金
国家重点研发计划; 比尔及梅琳达.盖茨基金会;
关键词
artemisinin; co-expression; transcription factor; transformation; metabolic engineering; FARNESYL DIPHOSPHATE SYNTHASE; ANTIMALARIAL-DRUG; OVEREXPRESSION; EXPRESSION; PLANTS; INITIATION; GROWTH;
D O I
10.3389/fpls.2023.1118082
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Artemisinin, derived from Artemisia annua, is currently used as the first-line treatment for malaria. However, wild-type plants have a low artemisinin biosynthesis rate. Although yeast engineering and plant synthetic biology have shown promising results, plant genetic engineering is considered the most feasible strategy, but it is also constrained by the stability of progeny development. Here we constructed three independent unique overexpressing vectors harboring three mainstream artemisinin biosynthesis enzymes HMGR, FPS, and DBR2, as well as two trichomes-specific transcription factors AaHD1 and AaORA. The simultaneous co-transformation of these vectors by Agrobacterium resulted in the successful increase of the artemisinin content in T0 transgenic lines by up to 3.2-fold (2.72%) leaf dry weight compared to the control plants. We also investigated the stability of transformation in progeny T1 lines. The results indicated that the transgenic genes were successfully integrated, maintained, and overexpressed in some of the T1 progeny plants' genomes, potentially increasing the artemisinin content by up to 2.2-fold (2.51%) leaf dry weight. These results indicated that the co-overexpression of multiple enzymatic genes and transcription factors via the constructed vectors provided promising results, which could be used to achieve the ultimate goal of a steady supply of artemisinin at affordable prices around the world.
引用
收藏
页数:13
相关论文
共 52 条
[31]   Production of the antimalarial drug precursor artemisinic acid in engineered yeast [J].
Ro, DK ;
Paradise, EM ;
Ouellet, M ;
Fisher, KJ ;
Newman, KL ;
Ndungu, JM ;
Ho, KA ;
Eachus, RA ;
Ham, TS ;
Kirby, J ;
Chang, MCY ;
Withers, ST ;
Shiba, Y ;
Sarpong, R ;
Keasling, JD .
NATURE, 2006, 440 (7086) :940-943
[32]   Harnessing plant trichome biochemistry for the production of useful compounds [J].
Schilmiller, Anthony L. ;
Last, Robert L. ;
Pichersky, Eran .
PLANT JOURNAL, 2008, 54 (04) :702-711
[33]   Artemisinin biosynthesis in growing plants of Artemisia annua. A 13CO2 study [J].
Schramek, Nicholas ;
Wang, Huahong ;
Roemisch-Margl, Werner ;
Keil, Birgit ;
Radykewicz, Tanja ;
Winzenhoerlein, Bernhard ;
Beerhues, Ludger ;
Bacher, Adelbert ;
Rohdich, Felix ;
Gershenzon, Jonathan ;
Liu, Benye ;
Eisenreich, Wolfgang .
PHYTOCHEMISTRY, 2010, 71 (2-3) :179-187
[34]   The Genome of Artemisia annua Provides Insight into the Evolution of Asteraceae Family and Artemisinin Biosynthesis [J].
Shen, Qian ;
Zhang, Lida ;
Liao, Zhihua ;
Wang, Shengyue ;
Yan, Tingxiang ;
Shi, Pu ;
Liu, Meng ;
Fu, Xueqing ;
Pan, Qifang ;
Wang, Yuliang ;
Lv, Zongyou ;
Lu, Xu ;
Zhang, Fangyuan ;
Jiang, Weimin ;
Ma, Yanan ;
Chen, Minghui ;
Hao, Xiaolong ;
Li, Ling ;
Tang, Yueli ;
Lv, Gang ;
Zhou, Yan ;
Sun, Xiaofen ;
Brodelius, Peter E. ;
Rose, Jocelyn K. C. ;
Tang, Kexuan .
MOLECULAR PLANT, 2018, 11 (06) :776-788
[35]   Transcriptional regulation of artemisinin biosynthesis in Artemisia annua L. [J].
Shen, Qian ;
Yan, Tingxiang ;
Fu, Xueqing ;
Tang, Kexuan .
SCIENCE BULLETIN, 2016, 61 (01) :18-25
[36]   The roles of AaMIXTA1 in regulating the initiation of glandular trichomes and cuticle biosynthesis in Artemisia annua [J].
Shi, Pu ;
Fu, Xueqing ;
Shen, Qian ;
Liu, Meng ;
Pan, Qifang ;
Tang, Yueli ;
Jiang, Weimin ;
Lv, Zongyou ;
Yan, Tingxiang ;
Ma, Yanan ;
Chen, Minghui ;
Hao, Xiaolong ;
Liu, Pin ;
Li, Ling ;
Sun, Xiaofen ;
Tang, Kexuan .
NEW PHYTOLOGIST, 2018, 217 (01) :261-276
[37]   Promotion of artemisinin content in Artemisia annua by overexpression of multiple artemisinin biosynthetic pathway genes [J].
Shi, Pu ;
Fu, Xueqing ;
Liu, Meng ;
Shen, Qian ;
Jiang, Weimin ;
Li, Ling ;
Sun, Xiaofen ;
Tang, Kexuan .
PLANT CELL TISSUE AND ORGAN CULTURE, 2017, 129 (02) :251-259
[38]   Molecular insights into AabZIP1-mediated regulation on artemisinin biosynthesis and drought tolerance in Artemisia annua [J].
Shu, Guoping ;
Tang, Yueli ;
Yuan, Mingyuan ;
Wei, Ning ;
Zhang, Fangyuan ;
Yang, Chunxian ;
Lan, Xiaozhong ;
Chen, Min ;
Tang, Kexuan ;
Xiang, Lien ;
Liao, Zhihua .
ACTA PHARMACEUTICA SINICA B, 2022, 12 (03) :1500-1513
[39]   Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin [J].
Teoh, KH ;
Polichuk, DR ;
Reed, DW ;
Nowak, G ;
Covello, PS .
FEBS LETTERS, 2006, 580 (05) :1411-1416
[40]   The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine [J].
Tu, Youyou .
NATURE MEDICINE, 2011, 17 (10) :1217-1220