Partial Substitution of Gd with Y on the Lattice Parameter, Microstructure, and Mechanical Properties of the As-Cast Mg-4Gd-2Zn Alloy

被引:3
作者
Liu, Fang [1 ]
Xie, Huanjian [2 ]
Li, Yu [1 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Nanjing, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing, Peoples R China
关键词
lattice parameter; mechanical strengthening mechanism; Mg-Gd-Y-Zn alloy; phase composition; MAGNESIUM ALLOYS; MG-GD; DUCTILITY; STRENGTH; PHASE;
D O I
10.1007/s11665-022-07359-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this research, a rare earth element yttrium in ternary Mg alloys is selected to substitute gadolinium to enable lightweight and enhanced mechanical properties. The results indicate that when the alloy does not contain Y, alpha-Mg, and W-phase are major phases. The volume fraction of the W-phase decreases gradually by substituting Gd with Y, while the long-period stacking order (LPSO) phase increases gradually. Meanwhile, Rietveld refinement results show that the lattice parameters and cell volume of alpha-Mg increase, and the axial ratio (c/a) of alpha-Mg decreases. Preliminary tensile tests in air show that the alloy containing 2 wt% Y has the best strength, with yield strength of 103.4 MPa and ultimate tensile strength of 197.8 MPa, while the alloy containing 4 wt% Y has the highest ductility with an elongation of 11.2%. The synergistic strengthening of the W-phase and 18R-LPSO phase, the high fraction of the 18R-LPSO phase, and its kink bands formed during deformation make the alloy contain 2 wt% Y has a higher elongation. However, if the alloy only contains the W-phase, its properties will be reduced.
引用
收藏
页码:3542 / 3549
页数:8
相关论文
共 38 条
[11]   Study on Wear Model and Adhesive Wear Mechanism of Brass under Boundary Lubrication [J].
Liu, Lin ;
Yang, Chao ;
Zhou, Jianzhong ;
Garmestani, Hamid ;
Dastan, Davoud .
PROTECTION OF METALS AND PHYSICAL CHEMISTRY OF SURFACES, 2021, 57 (02) :367-373
[12]   Formation of the third bodies of steel sliding against brass under lubricated conditions [J].
Liu, Lin ;
Sheng, Yuanyuan ;
Liu, Ming ;
Dienwiebel, Martin ;
Zhang, Zhichen ;
Dastan, Davoud .
TRIBOLOGY INTERNATIONAL, 2019, 140
[13]   Inhibition of stress corrosion cracking in 304 stainless steel through titanium ion implantation [J].
Liu, Ming ;
Li, ChenYu ;
Liu, Lin ;
Ye, Youjun ;
Dastan, Davoud ;
Garmestani, Hamid .
MATERIALS SCIENCE AND TECHNOLOGY, 2020, 36 (03) :284-292
[14]   Crystal structure, phase content, and tensile properties of As-cast Mg-Gd-Y-Al alloys [J].
Liu, Xiqin ;
Liu, Fang ;
Liu, Zili ;
Xie, Huanjian ;
Li, Jian .
MATERIALS TODAY COMMUNICATIONS, 2020, 25
[15]   Effect of substitution of Zn with Ni on microstructure evolution and mechanical properties of LPSO dominant Mg-Y-Zn alloys [J].
Lyu, Jinbei ;
Kim, Jonghyun ;
Liao, Hongxin ;
She, Jia ;
Song, Jiangfeng ;
Peng, Jian ;
Pan, Fusheng ;
Jiang, Bin .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 773
[16]  
Mizutani U, 2011, HUME-ROTHERY RULES FOR STRUCTURALLY COMPLEX ALLOY PHASES, P1
[17]   Microstructures and properties of Mg-7Gd alloy containing Y [J].
Peng, Q. M. ;
Wu, Y. M. ;
Fang, D. Q. ;
Meng, J. ;
Wang, L. M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 430 (1-2) :252-256
[18]   On the role of non-basal deformation mechanisms for the ductility of Mg and Mg-Y alloys [J].
Sandloebes, S. ;
Zaefferer, S. ;
Schestakow, I. ;
Yi, S. ;
Gonzalez-Martinez, R. .
ACTA MATERIALIA, 2011, 59 (02) :429-439
[19]   Mixed conductivity and the conduction mechanism of the orthorhombic CaZrO3 based materials [J].
Shan, Ke ;
Zhai, Fengrui ;
Yi, Zhong-Zhou ;
Yin, Xi-Tao ;
Dastan, Davoud ;
Tajabadi, Fariba ;
Jafari, Azadeh ;
Abbasi, Sedigheh .
SURFACES AND INTERFACES, 2021, 23
[20]   Mixed conductivities of A-site deficient Y, Cr-doubly doped SrTiO3 as novel dense diffusion barrier and temperature-independent limiting current oxygen sensors [J].
Shan, Ke ;
Yi, Zhong-Zhou ;
Yin, Xi-Tao ;
Dastan, Davoud ;
Dadkhah, Shohreh ;
Coates, Benjamin T. ;
Garmestani, Hamid .
ADVANCED POWDER TECHNOLOGY, 2020, 31 (12) :4657-4664