THE ENCLOSURE METHOD FOR THE DETECTION OF VARIABLE ORDER IN FRACTIONAL DIFFUSION EQUATIONS

被引:2
作者
Ikehata, Masaru [1 ,2 ]
Kian, Yavar [3 ]
机构
[1] Hiroshima Univ, Lab Math, Grad Sch Adv Sci & Engn, Higashihiroshima 7398527, Japan
[2] Gunma Univ, Maebashi, Gumma 3718510, Japan
[3] Aix Marseille Univ, CNRS, CPT, Univ Toulon, Marseille, France
基金
日本学术振兴会;
关键词
inverse problem; time-fractional diffusion equation; space-dependent variable order; anomalous diffusion; Enclosure method; DOMAIN;
D O I
10.3934/ipi.2022036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a new type of inverse obstacle problem governed by a variable-order time-fraction diffusion equation in a bounded domain. The unknown obstacle is a region where the space dependent variableorder of fractional time derivative of the governing equation deviates from a known homogeneous background one. The observation data is given by the Neumann data of the solution of the governing equation for a specially designed Dirichlet data. Under a suitable jump condition on the deviation, it is shown that the most recent version of the time domain enclosure method enables one to extract information about the geometry of the obstacle and a qualitative nature of the jump, from the observation data.
引用
收藏
页码:180 / 202
页数:23
相关论文
共 39 条
[1]   FIELD-STUDY OF DISPERSION IN A HETEROGENEOUS AQUIFER .2. SPATIAL MOMENTS ANALYSIS [J].
ADAMS, EE ;
GELHAR, LW .
WATER RESOURCES RESEARCH, 1992, 28 (12) :3293-3307
[2]   Inverse problem of determining an order of the Caputo time-fractional derivative for a subdiffusion equation [J].
Alimov, Shavkat ;
Ashurov, Ravshan .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (05) :651-658
[3]   Stability and Convergence of a Time-Fractional Variable Order Hantush Equation for a Deformable Aquifer [J].
Atangana, Abdon ;
Noutchie, S. C. Oukouomi .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[4]  
Brezis H, 2011, UNIVERSITEXT, P1, DOI 10.1007/978-0-387-70914-7_1
[5]   Theory and simulation of time-fractional fluid diffusion in porous media [J].
Carcione, Jose M. ;
Sanchez-Sesma, Francisco J. ;
Luzon, Francisco ;
Perez Gavilan, Juan J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (34)
[6]   A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures [J].
Chen, Wen ;
Zhang, Jianjun ;
Zhang, Jinyang .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) :76-92
[7]   Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation [J].
Cheng, Jin ;
Nakagawa, Junichi ;
Yamamoto, Masahiro ;
Yamazaki, Tomohiro .
INVERSE PROBLEMS, 2009, 25 (11)
[8]   Asymptotic Behavior of the Solution of the Space Dependent Variable Order Fractional Diffusion Equation: Ultraslow Anomalous Aggregation [J].
Fedotov, Sergei ;
Han, Daniel .
PHYSICAL REVIEW LETTERS, 2019, 123 (05)
[9]   Subdiffusive master equation with space-dependent anomalous exponent and structural instability [J].
Fedotov, Sergei ;
Falconer, Steven .
PHYSICAL REVIEW E, 2012, 85 (03)
[10]  
GLOCKLE WG, 1995, BIOPHYS J, V68, P46, DOI 10.1016/S0006-3495(95)80157-8