Long-range quantum energy teleportation and distribution on a hyperbolic quantum network

被引:5
作者
Ikeda, Kazuki [1 ,2 ]
机构
[1] SUNY Stony Brook, Codesign Ctr Quantum Advantage, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Ctr Nucl Theory, Dept Phys & Astron, Stony Brook, NY 11794 USA
来源
IET QUANTUM COMMUNICATION | 2024年 / 5卷 / 04期
关键词
optical fibre networks; quantum communication; quantum computing; quantum computing techniques; quantum cryptography; quantum information; teleportation; KEY DISTRIBUTION; STATE;
D O I
10.1049/qtc2.12090
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Teleporting energy to remote locations is new challenge for quantum information science and technology. Developing a method for transferring local energy in laboratory systems to remote locations will enable non-trivial energy flows in quantum networks. From the perspective of quantum information engineering, we propose a method for distributing local energy to a large number of remote nodes using hyperbolic geometry. Hyperbolic networks are suitable for energy allocation in large quantum networks since the number of nodes grows exponentially. To realise long-range quantum energy teleportation (QET), we propose a hybrid method of quantum state telepotation and QET. By transmitting local quantum information through quantum teleportation and performing conditional operations on that information, QET can theoretically be realized independent of geographical distance. The method we present will provide new insights into new applications of future large-scale quantum networks and potential applications of quantum physics to information engineering.
引用
收藏
页码:543 / 550
页数:8
相关论文
共 50 条
  • [41] Three-particle hyper-entanglement: teleportation and quantum key distribution
    Perumangatt, Chithrabhanu
    Rahim, Aadhi Abdul
    Salla, Gangi Reddy
    Prabhakar, Shashi
    Samanta, Goutam Kumar
    Paul, Goutam
    Singh, Ravindra Pratap
    QUANTUM INFORMATION PROCESSING, 2015, 14 (10) : 3813 - 3826
  • [42] Long-distance entanglement and quantum teleportation in coupled-cavity arrays
    Giampaolo, Salvatore M.
    Illuminati, Fabrizio
    PHYSICAL REVIEW A, 2009, 80 (05):
  • [43] Modelling Short-range Quantum Teleportation for Scalable Multi-Core Quantum Computing Architectures
    Rodrigo, Santiago
    Abadal, Sergi
    Almudever, Carmen G.
    Alarcon, Eduard
    PROCEEDINGS OF THE 8TH ACM INTERNATIONAL CONFERENCE ON NANOSCALE COMPUTING AND COMMUNICATION (ACM NANOCOM 2021), 2021,
  • [44] Bidirectional quantum teleportation in multi-hop communication network
    Zhang, Zhihua
    Sang, Yuyang
    QUANTUM INFORMATION PROCESSING, 2023, 22 (05)
  • [45] Quantum teleportation and entanglement swapping with long baseline in outer space
    Lin, Shih-Yuin
    Hu, Bei-Lok
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (16)
  • [46] Quantum state transfer and distribution of past-future correlations in a quantum network
    Jin, Yao
    QUANTUM INFORMATION PROCESSING, 2024, 23 (08)
  • [47] Quantum-critical properties of the long-range transverse-field Ising model from quantum Monte Carlo simulations
    Koziol, Jan Alexander
    Langheld, Anja
    Kapfer, Sebastian C.
    Schmidt, Kai Phillip
    PHYSICAL REVIEW B, 2021, 103 (24)
  • [48] Experimental quantum teleportation of a Toffoli gate across three spatially distributed parties in a photonic quantum network
    Dong, Xiduo
    Liu, Shiting
    Mao, Ya-li
    Guo, Bixiang
    Xu, Shufeng
    Chen, Hu
    Guo, Yuxiang
    Li, Zheng-da
    Fan, Jingyun
    OPTICS EXPRESS, 2024, 32 (22): : 39675 - 39684
  • [49] Teleportation-based collective attacks in Gaussian quantum key distribution
    Tserkis, Spyros
    Hosseinidehaj, Nedasadat
    Walk, Nathan
    Ralph, Timothy C.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [50] Satellite-based entanglement distribution and quantum teleportation with continuous variables
    GONZALEZ-RAYA, T. A. S. I. O.
    PIRANDOLA, S. T. E. F. A. N. O.
    SANZ, M. I. K. E. L.
    COMMUNICATIONS PHYSICS, 2024, 7 (01)