Long-range quantum energy teleportation and distribution on a hyperbolic quantum network

被引:5
作者
Ikeda, Kazuki [1 ,2 ]
机构
[1] SUNY Stony Brook, Codesign Ctr Quantum Advantage, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Ctr Nucl Theory, Dept Phys & Astron, Stony Brook, NY 11794 USA
来源
IET QUANTUM COMMUNICATION | 2024年 / 5卷 / 04期
关键词
optical fibre networks; quantum communication; quantum computing; quantum computing techniques; quantum cryptography; quantum information; teleportation; KEY DISTRIBUTION; STATE;
D O I
10.1049/qtc2.12090
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Teleporting energy to remote locations is new challenge for quantum information science and technology. Developing a method for transferring local energy in laboratory systems to remote locations will enable non-trivial energy flows in quantum networks. From the perspective of quantum information engineering, we propose a method for distributing local energy to a large number of remote nodes using hyperbolic geometry. Hyperbolic networks are suitable for energy allocation in large quantum networks since the number of nodes grows exponentially. To realise long-range quantum energy teleportation (QET), we propose a hybrid method of quantum state telepotation and QET. By transmitting local quantum information through quantum teleportation and performing conditional operations on that information, QET can theoretically be realized independent of geographical distance. The method we present will provide new insights into new applications of future large-scale quantum networks and potential applications of quantum physics to information engineering.
引用
收藏
页码:543 / 550
页数:8
相关论文
共 50 条
  • [11] Quantum Energy Teleportation versus Information Teleportation
    Wang, Jinzhao
    Yao, Shunyu
    QUANTUM, 2024, 8 : 1 - 12
  • [12] Demonstration of Quantum Energy Teleportation on Superconducting Quantum Hardware
    Ikeda, Kazuki
    PHYSICAL REVIEW APPLIED, 2023, 20 (02)
  • [13] Long-range quantum discord in critical spin systems
    Maziero, J.
    Celeri, L. C.
    Serra, R. M.
    Sarandy, M. S.
    PHYSICS LETTERS A, 2012, 376 (18) : 1540 - 1544
  • [14] Measurement as a Shortcut to Long-Range Entangled Quantum Matter
    Lu, Tsung-Cheng
    Lessa, Leonardo A.
    Kim, Isaac H.
    Hsieh, Timothy H.
    PRX QUANTUM, 2022, 3 (04):
  • [15] Quantum interactive proofs using quantum energy teleportation
    Ikeda, Kazuki
    Lowe, Adam
    QUANTUM INFORMATION PROCESSING, 2024, 23 (06)
  • [16] Entanglement Teleportation With Photons From Quantum Dots: Toward a Solid-State Based Quantum Network
    Rota, Michele B.
    Basset, Francesco Basso
    Tedeschi, Davide
    Trotta, Rinaldo
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (03)
  • [17] Long-distance quantum teleportation assisted with free-space entanglement distribution
    Ren Ji-Gang
    Yang Bin
    Yi Zhen-Huan
    Zhou Fei
    Chen Kai
    Peng Cheng-Zhi
    Pan Jian-Wei
    CHINESE PHYSICS B, 2009, 18 (08) : 3605 - 3610
  • [18] Quantum teleportation with independent sources and prior entanglement distribution over a network
    Sun, Qi-Chao
    Mao, Ya-Li
    Chen, Si-Jing
    Zhang, Wei
    Jiang, Yang-Fan
    Zhang, Yan-Bao
    Zhang, Wei-Jun
    Miki, Shigehito
    Yamashita, Taro
    Terai, Hirotaka
    Jiang, Xiao
    Chen, Teng-Yun
    You, Li-Xing
    Chen, Xian-Feng
    Wang, Zhen
    Fan, Jing-Yun
    Zhang, Qiang
    Pan, Jian-Wei
    NATURE PHOTONICS, 2016, 10 (10) : 671 - 675
  • [19] Versatile and controlled quantum teleportation network
    Zhou, Yao-Yao
    Mei, Peng-Xian
    Liu, Yan-Hong
    Wu, Liang
    Li, Yan-Xiang
    Yan, Zhi-Hui
    Jia, Xiao-Jun
    CHINESE PHYSICS B, 2024, 33 (03)
  • [20] High fidelity quantum teleportation assistance with quantum neural network
    Huang, Chunhui
    Wu, Bichun
    MODERN PHYSICS LETTERS B, 2014, 28 (24):