Moving horizon estimation based on distributionally robust optimisation

被引:0
作者
Yang, Aolei [1 ]
Wang, Hao [1 ]
Sun, Qing [1 ]
Fei, Minrui [1 ]
机构
[1] Shanghai Univ, Sch Mecharon Engn & Automat, Shanghai, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Distributionally robust optimisation; moving horizon estimation; Wasserstein metric; state estimation; SYSTEMS;
D O I
10.1080/00207721.2024.2305691
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel moving horizon estimation approach based on distributionally robust optimisation to tackle the state estimation problem of non-linear systems with missing noise distribution information. The proposed method adopts a fuzzy set to mitigate the impact of uncertainties on state estimation. Specifically, the method derives an empirical distribution within the prediction window using a priori data and constructs a fuzzy sphere set using the Wasserstein metric with the empirical distribution as the sphere centre. This enables the estimation of the state sequence under the worst probability distribution of the fuzzy set. To demonstrate the effectiveness of the proposed method, a simple simulation example is conducted to compare its performance with that of traditional moving horizon estimation. The results provide evidence of the feasibility and superiority of the proposed approach.
引用
收藏
页码:1363 / 1376
页数:14
相关论文
共 21 条
  • [1] Alessandri A, 2014, IEEE DECIS CONTR P, P2591, DOI 10.1109/CDC.2014.7039785
  • [2] BenTal A, 2009, PRINC SER APPL MATH, P1
  • [3] Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations
    Esfahani, Peyman Mohajerin
    Kuhn, Daniel
    [J]. MATHEMATICAL PROGRAMMING, 2018, 171 (1-2) : 115 - 166
  • [4] Nonlinear Bayesian Estimation: From Kalman Filtering to a Broader Horizon
    Fang, Huazhen
    Tian, Ning
    Wang, Yebin
    Zhou, MengChu
    Haile, Mulugeta A.
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2018, 5 (02) : 401 - 417
  • [5] ON A FORMULA FOR THE L2 WASSERSTEIN METRIC BETWEEN MEASURES ON EUCLIDEAN AND HILBERT-SPACES
    GELBRICH, M
    [J]. MATHEMATISCHE NACHRICHTEN, 1990, 147 : 185 - 203
  • [6] Robust Stability of Moving Horizon Estimation Under Bounded Disturbances
    Ji, Luo
    Rawlings, James B.
    Hu, Wuhua
    Wynn, Andrew
    Diehl, Moritz
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (11) : 3509 - 3514
  • [7] Kuhn D., 2019, OPERATIONS RES MANAG, P130
  • [8] Nonlinear moving horizon estimation in the presence of bounded disturbances
    Mueller, Matthias A.
    [J]. AUTOMATICA, 2017, 79 : 306 - 314
  • [9] Computational Optimal Transport
    Peyre, Gabriel
    Cuturi, Marco
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2019, 11 (5-6): : 355 - 607
  • [10] Computation of arrival cost for moving horizon estimation via unscented Kalman filtering
    Qu, Cheryl C.
    Hahn, Juergen
    [J]. JOURNAL OF PROCESS CONTROL, 2009, 19 (02) : 358 - 363