GENERALIZED FIRST VARIATION AND GENERALIZED SEQUENTIAL FOURIER-FEYNMAN TRANSFORM

被引:1
作者
Kim, Byoung Soo [1 ]
机构
[1] Seoul Natl Univ Sci & Technol, Sch Nat Sci, Seoul 01811, South Korea
来源
KOREAN JOURNAL OF MATHEMATICS | 2023年 / 31卷 / 04期
关键词
generalized sequential Feynman integral; generalized sequential Fourier-Feynman transform; generalized sequential convolution product; generalized first variation; Banach algebra <SIC>S; CONVOLUTION PRODUCT; FUNCTIONALS;
D O I
10.11568/kjm.2023.31.4.521
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is a further development of the recent results by the author and coworker on the generalized sequential Fourier-Feynman transform for func-tionals in a Banach algebra S and some related functionals. We establish existence of the generalized first variation of these functionals. Also we investigate various relationships between the generalized sequential Fourier-Feynman transform, the generalized sequential convolution product and the generalized first variation of the functionals.
引用
收藏
页码:521 / 536
页数:16
相关论文
共 17 条
[1]   Fourier-Feynman transform, convolution and first variation [J].
Ahn, JM ;
Chang, KS ;
Kim, BS ;
Yoo, I .
ACTA MATHEMATICA HUNGARICA, 2003, 100 (03) :215-235
[2]  
Cameron R. H., 1989, Deformations Math. Struct., Complex Analy. Phys. Appl., P297, DOI [10.1007/978-94-009-2643-1_27, DOI 10.1007/978-94-009-2643-1_27]
[3]  
Cameron R.H., 1983, Mem. Amer. Math. Soc., V288
[4]  
CAMERON RH, 1986, P LOND MATH SOC, V52, P557
[5]   SEQUENTIAL FOURIER FEYNMAN TRANSFORMS [J].
CAMERON, RH ;
STORVICK, DA .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1985, 10 (01) :107-111
[6]  
Cameron RobertH., 1980, PROCEEDINGS, V798, P18
[7]  
Chang KS, 2008, T AM MATH SOC, V360, P1819
[8]   Relationships involving generalized Fourier-Feynman transform, convolution and first variation [J].
Chang, KS ;
Cho, DH ;
Kim, BS ;
Song, TS ;
Yoo, I .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2005, 16 (5-6) :391-405
[9]   Fourier-Feynman transform, convolution and first variation of functionals on abstract Wiener space [J].
Chang, KS ;
Kim, BS ;
Yoo, I .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2000, 10 (3-4) :179-200
[10]   ANALYTIC FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTION PRODUCTS ASSOCIATED WITH GAUSSIAN PROCESSES ON WIENER SPACE [J].
Chang, Seung Jun ;
Choi, Jae Gil .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (04) :785-807