Multiparameter warning of lithium-ion battery overcharge-thermal runaway

被引:11
|
作者
Wang, Jianfeng [1 ,2 ]
Chen, Bowei [1 ]
Li, Yuhan [1 ]
Hu, Ting [1 ]
Liu, Fen [3 ]
Shi, Mengyu [1 ]
Ren, Xutong [1 ]
Jia, Yongkai [1 ]
Li, Weihua [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Automot Engn, Weihai 264209, Peoples R China
[2] Yangtze River Delta HIT Robot Technol Res Inst, Wuhu 241000, Peoples R China
[3] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Battery safety; Overcharge-thermal runaway; Pressure-type warning; Multiparameter warning strategy; FAILURE-MECHANISM; ELECTRIC VEHICLES; TEMPERATURE; PREDICTION; FIRE;
D O I
10.1016/j.est.2023.110088
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The rapid development of new energy vehicles has drawn widespread attention to battery safety. Overcharging, as an important source of thermal runaway, may occur instantaneously without obvious signs, and any corresponding fire will be difficult to extinguish. This study is an investigation of overcharging thermal runaway and thermal runaway warnings for lithium-ion batteries. A stress-type early warning system is proposed, which has faster response time and more distinctive characteristics compared with other parameters. Through the association rule mining method, a multi-parameter coupled thermal runaway early warning strategy based on voltage, temperature, and pressure parameters was designed. A hierarchical early warning model including feature extraction, data processing and early warning evaluation modules was established. On this basis, a remaining time prediction module was added to achieve an alarm escape time of up to 474 s and shortest of 65 s, meeting safety standards. In the thermal runaway experiment at 705.2 degrees C, the early warning level system was triggered respectively. The maximum battery temperatures were 28.4 degrees C, 41.5 degrees Cand 60.3 degrees C. The escape time errors were 16.56 s, 11.52 s, and 11.88 s respectively, all within 20 s for each level. Corresponding to different experimental results, the significant level classification simultaneously verifies the accuracy and effectiveness of the classification strategy.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Towards a safer lithium-ion batteries: A critical review on cause, characteristics, warning and disposal strategy for thermal runaway
    Yang, Yu
    Wang, Renjie
    Shen, Zhaojie
    Yu, Quanqing
    Xiong, Rui
    Shen, Weixiang
    ADVANCES IN APPLIED ENERGY, 2023, 11
  • [42] Experimental Study on Thermal Runaway Process of 18650 Lithium-Ion Battery under Different Discharge Currents
    Li, Lun
    Ju, Xiaoyu
    Zhou, Xiaodong
    Peng, Yang
    Zhou, Zhizuan
    Cao, Bei
    Yang, Lizhong
    MATERIALS, 2021, 14 (16)
  • [43] Experimental investigation on suppression of thermal runaway propagation of lithium-ion battery by intermittent spray
    Zhang, Lin
    Duan, Qiangling
    Xu, Jiajia
    Meng, Xiangdong
    Sun, Jinhua
    Wang, Qingsong
    JOURNAL OF ENERGY STORAGE, 2023, 58
  • [44] Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility
    Held, Marcel
    Tuchschmid, Martin
    Zennegg, Markus
    Figi, Renato
    Schreiner, Claudia
    Mellert, Lars Derek
    Welte, Urs
    Kompatscher, Michael
    Hermann, Michael
    Nachef, Lea
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 165
  • [45] Experimental study on the influence of different heating methods on thermal runaway of lithium-ion battery
    Zhang, Qingsong
    Liu, Tiantian
    Wang, Qiong
    JOURNAL OF ENERGY STORAGE, 2021, 42
  • [46] A comprehensive study on heat transfer mechanism and thermal runaway suppression of the lithium-ion battery
    Sun, Tao
    Yan, Yulong
    Wang, Xinhua
    Rasool, Ghulam
    Zhang, Kai
    Li, Tie
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 245
  • [47] Assessment of Thermal Runaway propagation in lithium-ion battery modules with different separator materials
    da Silva, Gabriel Menezes
    Lima, Thiago Jose
    da Silva, Dayvis Dias
    Henriques, Izabela Batista
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 197
  • [48] Experimental Study on the Efficiency of Hydrogel on Suppressing Thermal Runaway Propagation of Lithium-Ion Battery
    Liu, Chunyuan
    Zhang, Guowei
    Yuan, Diping
    Jiang, Liming
    Fan, Yafei
    Kong, Depeng
    FIRE TECHNOLOGY, 2024,
  • [49] Electrolyte additives for improved lithium-ion battery performance and overcharge protection
    van Ree, Teunis
    CURRENT OPINION IN ELECTROCHEMISTRY, 2020, 21 : 22 - 30
  • [50] Experimental Study on Effects of Triggering Modes on Thermal Runaway Characteristics of Lithium-Ion Battery
    Dong, Yuanjin
    Meng, Jian
    Sun, Xiaomei
    Zhao, Peidong
    Sun, Peng
    Zheng, Bin
    WORLD ELECTRIC VEHICLE JOURNAL, 2023, 14 (10):