Dynamics of polynomial maps over finite fields

被引:4
作者
Oliveira, Jose Alves [1 ]
Martinez, F. E. Brochero [2 ]
机构
[1] Univ Fed Lavras, UFLA, Dept Matemat, BR-37200900 Lavras, MG, Brazil
[2] Univ Fed Minas Gerais, UFMG, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
Functional graph; Polynomial maps; Finite fields; Finite abelian group; FUNCTIONAL GRAPHS;
D O I
10.1007/s10623-023-01332-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let F-q be a finite field with q elements and let n be a positive integer. In this paper, we study the digraph associated to the map x -> x(n)h(x (q-1/m)) over F-q, where h(x) is an element of F-q [x]. We completely determine the associated functional graph of maps that satisfy a certain condition of regularity. In particular, we provide the functional graphs associated to monomial maps. As a consequence of our results, one have the number of connected components, length of the cycles and number of fixed points of these class of maps.
引用
收藏
页码:1113 / 1125
页数:13
相关论文
共 21 条
[11]  
Martins R., 2019, Radon Ser. Comput. Appl. Math., V23, P135
[12]   The functional graph of linear maps over finite fields and applications [J].
Panario, Daniel ;
Reis, Lucas .
DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (2-3) :437-453
[13]  
Peinado A., 2001, LECT NOTES COMPUT SC, P219
[14]  
Qureshi C., 2021, ARXIV
[15]   Dynamics of the a-map over residually finite Dedekind domains and applications [J].
Qureshi, Claudio ;
Reis, Lucas .
JOURNAL OF NUMBER THEORY, 2019, 204 :134-154
[16]   The graph structure of Chebyshev polynomials over finite fields and applications [J].
Qureshi, Claudio ;
Panario, Daniel .
DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (2-3) :393-416
[17]   REDEI ACTIONS ON FINITE FIELDS AND MULTIPLICATION MAP IN CYCLIC GROUP [J].
Qureshi, Claudio ;
Panario, Daniel .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (03) :1486-1503
[18]   The graph of the square mapping on the prime fields [J].
Rogers, TD .
DISCRETE MATHEMATICS, 1996, 148 (1-3) :317-324
[20]  
Wang Q., 2019, Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications, P319