Dynamics of polynomial maps over finite fields

被引:2
作者
Oliveira, Jose Alves [1 ]
Martinez, F. E. Brochero [2 ]
机构
[1] Univ Fed Lavras, UFLA, Dept Matemat, BR-37200900 Lavras, MG, Brazil
[2] Univ Fed Minas Gerais, UFMG, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
Functional graph; Polynomial maps; Finite fields; Finite abelian group; FUNCTIONAL GRAPHS;
D O I
10.1007/s10623-023-01332-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let F-q be a finite field with q elements and let n be a positive integer. In this paper, we study the digraph associated to the map x -> x(n)h(x (q-1/m)) over F-q, where h(x) is an element of F-q [x]. We completely determine the associated functional graph of maps that satisfy a certain condition of regularity. In particular, we provide the functional graphs associated to monomial maps. As a consequence of our results, one have the number of connected components, length of the cycles and number of fixed points of these class of maps.
引用
收藏
页码:1113 / 1125
页数:13
相关论文
共 21 条
  • [1] On constructing permutations of finite fields
    Akbary, Amir
    Ghioca, Dragos
    Wang, Qiang
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (01) : 51 - 67
  • [2] On the cycle structure of repeated exponentiation modulo a prime
    Chou, WS
    Shparlinski, IE
    [J]. JOURNAL OF NUMBER THEORY, 2004, 107 (02) : 345 - 356
  • [3] PERIODIC POINTS OF POLYNOMIALS OVER FINITE FIELDS
    Garton, Derek
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (07) : 4849 - 4871
  • [4] Chebyshev action on finite fields
    Gassert, T. Alden
    [J]. DISCRETE MATHEMATICS, 2014, 315 : 83 - 94
  • [5] On irreducible divisors of iterated polynomials
    Gomez-Perez, Domingo
    Ostafe, Alina
    Shparlinski, Igor E.
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2014, 30 (04) : 1123 - 1134
  • [6] Irreducible polynomials over finite fields produced by composition of quadratics
    Heath-Brown, David Rodney
    Micheli, Giacomo
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (03) : 847 - 855
  • [7] Ireland K., 1982, A classical Introduction to Modern Number Theory, DOI [10.1007/978-1-4757-1779-2, DOI 10.1007/978-1-4757-1779-2]
  • [8] The Elliptic Curve Digital Signature Algorithm (ECDSA)
    Don Johnson
    Alfred Menezes
    Scott Vanstone
    [J]. International Journal of Information Security, 2001, 1 (1) : 36 - 63
  • [9] Konyagin SV., 2016, J COMB THEORY B, V89, P116
  • [10] On Functional Graphs of Quadratic Polynomials
    Mans, Bernard
    Sha, Min
    Shparlinski, Igor E.
    Sutantyo, Daniel
    [J]. EXPERIMENTAL MATHEMATICS, 2019, 28 (03) : 292 - 300