Dynamics of polynomial maps over finite fields

被引:4
作者
Oliveira, Jose Alves [1 ]
Martinez, F. E. Brochero [2 ]
机构
[1] Univ Fed Lavras, UFLA, Dept Matemat, BR-37200900 Lavras, MG, Brazil
[2] Univ Fed Minas Gerais, UFMG, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
Functional graph; Polynomial maps; Finite fields; Finite abelian group; FUNCTIONAL GRAPHS;
D O I
10.1007/s10623-023-01332-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let F-q be a finite field with q elements and let n be a positive integer. In this paper, we study the digraph associated to the map x -> x(n)h(x (q-1/m)) over F-q, where h(x) is an element of F-q [x]. We completely determine the associated functional graph of maps that satisfy a certain condition of regularity. In particular, we provide the functional graphs associated to monomial maps. As a consequence of our results, one have the number of connected components, length of the cycles and number of fixed points of these class of maps.
引用
收藏
页码:1113 / 1125
页数:13
相关论文
共 21 条
[1]   On constructing permutations of finite fields [J].
Akbary, Amir ;
Ghioca, Dragos ;
Wang, Qiang .
FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (01) :51-67
[2]   On the cycle structure of repeated exponentiation modulo a prime [J].
Chou, WS ;
Shparlinski, IE .
JOURNAL OF NUMBER THEORY, 2004, 107 (02) :345-356
[3]   PERIODIC POINTS OF POLYNOMIALS OVER FINITE FIELDS [J].
Garton, Derek .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (07) :4849-4871
[4]   Chebyshev action on finite fields [J].
Gassert, T. Alden .
DISCRETE MATHEMATICS, 2014, 315 :83-94
[5]   On irreducible divisors of iterated polynomials [J].
Gomez-Perez, Domingo ;
Ostafe, Alina ;
Shparlinski, Igor E. .
REVISTA MATEMATICA IBEROAMERICANA, 2014, 30 (04) :1123-1134
[6]   Irreducible polynomials over finite fields produced by composition of quadratics [J].
Heath-Brown, David Rodney ;
Micheli, Giacomo .
REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (03) :847-855
[7]  
Ireland K., 1982, A classical Introduction to Modern Number Theory, DOI [10.1007/978-1-4757-1779-2, DOI 10.1007/978-1-4757-1779-2]
[8]   The Elliptic Curve Digital Signature Algorithm (ECDSA) [J].
Don Johnson ;
Alfred Menezes ;
Scott Vanstone .
International Journal of Information Security, 2001, 1 (1) :36-63
[9]  
Konyagin SV., 2016, J COMB THEORY B, V89, P116
[10]   On Functional Graphs of Quadratic Polynomials [J].
Mans, Bernard ;
Sha, Min ;
Shparlinski, Igor E. ;
Sutantyo, Daniel .
EXPERIMENTAL MATHEMATICS, 2019, 28 (03) :292-300