Artificial intelligence for the detection of sacroiliitis on magnetic resonance imaging in patients with axial spondyloarthritis

被引:9
|
作者
Lee, Seulkee [1 ]
Jeon, Uju [2 ]
Lee, Ji Hyun [3 ]
Kang, Seonyoung [1 ]
Kim, Hyungjin [1 ]
Lee, Jaejoon [1 ]
Chung, Myung Jin [2 ,4 ]
Cha, Hoon-Suk [1 ]
机构
[1] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Med, Seoul, South Korea
[2] Samsung Med Ctr, Med AI Res Ctr, Seoul, South Korea
[3] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Radiol, Seoul, South Korea
[4] Sungkyunkwan Univ, Sch Med, Dept Data Convergence & Future Med, Seoul, South Korea
来源
FRONTIERS IN IMMUNOLOGY | 2023年 / 14卷
基金
新加坡国家研究基金会;
关键词
axial spondyloarthritis; MRI; artificial intelligence; machine learning; sacroiliitis; ANKYLOSING-SPONDYLITIS; RADIOGRAPHS; DIAGNOSIS; MRI;
D O I
10.3389/fimmu.2023.1278247
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
BackgroundMagnetic resonance imaging (MRI) is important for the early detection of axial spondyloarthritis (axSpA). We developed an artificial intelligence (AI) model for detecting sacroiliitis in patients with axSpA using MRI.MethodsThis study included MRI examinations of patients who underwent semi-coronal MRI scans of the sacroiliac joints owing to chronic back pain with short tau inversion recovery (STIR) sequences between January 2010 and December 2021. Sacroiliitis was defined as a positive MRI finding according to the ASAS classification criteria for axSpA. We developed a two-stage framework. First, the Faster R-CNN network extracted regions of interest (ROIs) to localize the sacroiliac joints. Maximum intensity projection (MIP) of three consecutive slices was used to mimic the reading of two adjacent slices. Second, the VGG-19 network determined the presence of sacroiliitis in localized ROIs. We augmented the positive dataset six-fold. The sacroiliitis classification performance was measured using the sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC). The prediction models were evaluated using three-round three-fold cross-validation.ResultsA total of 296 participants with 4,746 MRI slices were included in the study. Sacroiliitis was identified in 864 MRI slices of 119 participants. The mean sensitivity, specificity, and AUROC for the detection of sacroiliitis were 0.725 (95% CI, 0.705-0.745), 0.936 (95% CI, 0.924-0.947), and 0.830 (95%CI, 0.792-0.868), respectively, at the image level and 0.947 (95% CI, 0.912-0.982), 0.691 (95% CI, 0.603-0.779), and 0.816 (95% CI, 0.776-0.856), respectively, at the patient level. In the original model, without using MIP and dataset augmentation, the mean sensitivity, specificity, and AUROC were 0.517 (95% CI, 0.493-0.780), 0.944 (95% CI, 0.933-0.955), and 0.731 (95% CI, 0.681-0.780), respectively, at the image level and 0.806 (95% CI, 0.729-0.883), 0.617 (95% CI, 0.523-0.711), and 0.711 (95% CI, 0.660-0.763), respectively, at the patient level. The performance was improved by MIP techniques and data augmentation.ConclusionAn AI model was developed for the detection of sacroiliitis using MRI, compatible with the ASAS criteria for axSpA, with the potential to aid MRI application in a wider clinical setting.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Magnetic resonance imaging (MRI) diagnostics in axial spondyloarthritis
    Witte, T.
    Baraliakos, X.
    ZEITSCHRIFT FUR RHEUMATOLOGIE, 2017, 76 (07): : 574 - 579
  • [32] Computed tomography versus magnetic resonance imaging. Pros and cons in axial spondyloarthritis
    Hermann, Kay Geert A.
    Diekhoff, Torsten
    ZEITSCHRIFT FUR RHEUMATOLOGIE, 2023, : 638 - 645
  • [33] Challenges in interpreting sacroiliac magnetic resonance imaging for the diagnosis of axial spondyloarthritis
    El Ouali, Zakaria
    Gossec, Laure
    JOINT BONE SPINE, 2023, 90 (01)
  • [34] The Characteristic Findings of Sacroiliitis Using Magnetic Resonance Imaging in Patients with Axial Spondylarthritis and Brucellosis
    Yolbas, Servet
    Bozgeyik, Zulkif
    Denk, Affan
    Yildirim, Ahmet
    Koca, Suleyman Serdar
    CLINICAL AND EXPERIMENTAL RHEUMATOLOGY, 2014, 32 (04) : S4 - S5
  • [35] Fatty corner lesions in T1-weighted magnetic resonance imaging as an alternative to sacroiliitis for diagnosis of axial spondyloarthritis
    Ho Yin Chung
    Rachel Sze Wan Yiu
    Shirley Chiu Wai Chan
    Kam Ho Lee
    Chak Sing Lau
    BMC Rheumatology, 3
  • [36] Magnetic resonance imaging assessment in patients with axial spondyloarthritis: development of checklists for use in clinical practice
    Almodovar, Raquel
    Bueno, Angel
    Batlle, Enrique
    Beltran-Catalan, Emma
    Bernabeu, Daniel
    Castro Copete, Carmen
    Cepero, Angela
    Crespo, Concha
    Diez, Fernando
    Fernandez-Carballido, Cristina
    Garcia Lorente, Fran
    Gil De Miguel, Angel
    Juanola, Xavier
    Linares, Luis
    Montero Perez-Barquero, Rafael
    Castro, Carmen
    Moreno Ramos, Manuel Jose
    Moreno, Mireia
    Navarro-Compan, Victoria
    Pack, Christopher
    Quiles, Carlos
    Veintemillas, Maite
    Zarco, Pedro
    RHEUMATOLOGY INTERNATIONAL, 2019, 39 (12) : 2119 - 2127
  • [37] Future of prostate imaging: Artificial intelligence in assessing prostatic magnetic resonance imaging
    Chervenkov, Lyubomir
    Sirakov, Nikolay
    Kostov, Gancho
    Velikova, Tsvetelina
    Hadjidekov, George
    WORLD JOURNAL OF RADIOLOGY, 2023, 15 (05): : 136 - 145
  • [38] Magnetic resonance imaging of sacroiliitis in children: frequency of findings and interobserver reliability
    Orr, Katharine E.
    Andronikou, Savvas
    Bramham, Marc James
    Holjar-Erlic, Izidora
    Menegotto, Flavia
    Ramanan, Athimalaipet V.
    PEDIATRIC RADIOLOGY, 2018, 48 (11) : 1621 - 1628
  • [39] Early detection of sacroiliitis on magnetic resonance imaging and subsequent development of sacroiliitis on plain radiography. A prospective, longitudinal study
    Oostveen, J
    Prevo, R
    den Boer, J
    van de Laar, M
    JOURNAL OF RHEUMATOLOGY, 1999, 26 (09) : 1953 - 1958
  • [40] Sacroiliitis Detected by Magnetic Resonance Imaging in Patients With Systemic Sclerosis
    Arslan, Didem
    Turk, Ipek
    Kozanoglu, Erkan
    Kudas, Ozlem
    Kelle, Bayram
    Sakalli, Hakan
    ARCHIVES OF RHEUMATOLOGY, 2020, 35 (04) : 515 - 520