Artificial intelligence for the detection of sacroiliitis on magnetic resonance imaging in patients with axial spondyloarthritis

被引:9
|
作者
Lee, Seulkee [1 ]
Jeon, Uju [2 ]
Lee, Ji Hyun [3 ]
Kang, Seonyoung [1 ]
Kim, Hyungjin [1 ]
Lee, Jaejoon [1 ]
Chung, Myung Jin [2 ,4 ]
Cha, Hoon-Suk [1 ]
机构
[1] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Med, Seoul, South Korea
[2] Samsung Med Ctr, Med AI Res Ctr, Seoul, South Korea
[3] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Radiol, Seoul, South Korea
[4] Sungkyunkwan Univ, Sch Med, Dept Data Convergence & Future Med, Seoul, South Korea
来源
FRONTIERS IN IMMUNOLOGY | 2023年 / 14卷
基金
新加坡国家研究基金会;
关键词
axial spondyloarthritis; MRI; artificial intelligence; machine learning; sacroiliitis; ANKYLOSING-SPONDYLITIS; RADIOGRAPHS; DIAGNOSIS; MRI;
D O I
10.3389/fimmu.2023.1278247
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
BackgroundMagnetic resonance imaging (MRI) is important for the early detection of axial spondyloarthritis (axSpA). We developed an artificial intelligence (AI) model for detecting sacroiliitis in patients with axSpA using MRI.MethodsThis study included MRI examinations of patients who underwent semi-coronal MRI scans of the sacroiliac joints owing to chronic back pain with short tau inversion recovery (STIR) sequences between January 2010 and December 2021. Sacroiliitis was defined as a positive MRI finding according to the ASAS classification criteria for axSpA. We developed a two-stage framework. First, the Faster R-CNN network extracted regions of interest (ROIs) to localize the sacroiliac joints. Maximum intensity projection (MIP) of three consecutive slices was used to mimic the reading of two adjacent slices. Second, the VGG-19 network determined the presence of sacroiliitis in localized ROIs. We augmented the positive dataset six-fold. The sacroiliitis classification performance was measured using the sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC). The prediction models were evaluated using three-round three-fold cross-validation.ResultsA total of 296 participants with 4,746 MRI slices were included in the study. Sacroiliitis was identified in 864 MRI slices of 119 participants. The mean sensitivity, specificity, and AUROC for the detection of sacroiliitis were 0.725 (95% CI, 0.705-0.745), 0.936 (95% CI, 0.924-0.947), and 0.830 (95%CI, 0.792-0.868), respectively, at the image level and 0.947 (95% CI, 0.912-0.982), 0.691 (95% CI, 0.603-0.779), and 0.816 (95% CI, 0.776-0.856), respectively, at the patient level. In the original model, without using MIP and dataset augmentation, the mean sensitivity, specificity, and AUROC were 0.517 (95% CI, 0.493-0.780), 0.944 (95% CI, 0.933-0.955), and 0.731 (95% CI, 0.681-0.780), respectively, at the image level and 0.806 (95% CI, 0.729-0.883), 0.617 (95% CI, 0.523-0.711), and 0.711 (95% CI, 0.660-0.763), respectively, at the patient level. The performance was improved by MIP techniques and data augmentation.ConclusionAn AI model was developed for the detection of sacroiliitis using MRI, compatible with the ASAS criteria for axSpA, with the potential to aid MRI application in a wider clinical setting.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Magnetic resonance image compilation sequence to quantitatively detect active sacroiliitis with axial spondyloarthritis
    Jiang, Yunping
    Li, Wenjuan
    Zheng, Jing
    Zhang, Ke
    Liu, Chaoran
    Hong, Guobin
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2022, 12 (07) : 3666 - 3678
  • [22] New ASAS criteria for the diagnosis of spondyloarthritis: Diagnosing sacroiliitis by magnetic resonance imaging
    Banegas Illescas, M. E.
    Menendez, C. Lopez
    Rozas Rodriguez, M. L.
    Fernandez Quintero, R. M.
    RADIOLOGIA, 2014, 56 (01): : 7 - 15
  • [23] Etoricoxib in the treatment of active sacroiliitis in patients with axial spondyloarthritis, including ankylosing spondylitis
    Gaydukova, I. Z.
    Rebrov, A. P.
    Nam, I. F.
    Kirsanova, N. V.
    TERAPEVTICHESKII ARKHIV, 2014, 86 (12) : 42 - 47
  • [24] The Use of Magnetic Resonance Imaging in Axial Spondyloarthritis: Time to Bridge the Gap Between Radiologists and Rheumatologists
    Bennett, Alexander N.
    Marzo-Ortega, Helena
    Kaur-Papadakis, Daljit
    Rehman, Amer
    JOURNAL OF RHEUMATOLOGY, 2017, 44 (06) : 780 - 785
  • [25] Diagnostics of Sacroiliac Joint Differentials to Axial Spondyloarthritis Changes by Magnetic Resonance Imaging
    Jurik, Anne Grethe
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (03)
  • [26] Axial Spondyloarthritis: Does Magnetic Resonance Imaging Classification Improve Report Interpretation
    O'Neill, John
    Dhillon, Sandeep S.
    Ma, Christina Tianyun
    Stubbs, Euan Graeme Crowther
    Khalidi, Nader A.
    Ioannidis, George
    Beattie, Karen A.
    Carmona, Raj
    JCR-JOURNAL OF CLINICAL RHEUMATOLOGY, 2024, 30 (04) : 145 - 150
  • [27] Guidelines for magnetic resonance imaging in axial spondyloarthritis: A Delphi study
    Narvaez, J. A.
    Bueno Horcajadas, A.
    de Miguel Mendieta, E.
    Sanz Sanz, J.
    RADIOLOGIA, 2015, 57 (06): : 512 - 522
  • [28] Magnetic Resonance Imaging Compared to Conventional Radiographs for Detection of Chronic Structural Changes in Sacroiliac Joints in Axial Spondyloarthritis
    Poddubnyy, Denis
    Gaydukova, Irma
    Hermann, Kay-Geert
    Song, In-Ho
    Haibel, Hildrun
    Braun, Juergen
    Sieper, Joachim
    JOURNAL OF RHEUMATOLOGY, 2013, 40 (09) : 1557 - 1565
  • [29] Assessment of Sacroiliitis at Diagnosis of Juvenile Spondyloarthritis by Radiography, Magnetic Resonance Imaging, and Clinical Examination
    Weiss, Pamela F.
    Xiao, Rui
    Biko, David M.
    Chauvin, Nancy A.
    ARTHRITIS CARE & RESEARCH, 2016, 68 (02) : 187 - 194
  • [30] Artificial Intelligence in Cardiovascular Magnetic Resonance Imaging
    Castellaccio, A.
    Arostegui, N. Almeida
    Jimenez, M. Palomo
    Tapia, D. Quinones
    Zurita, M. Bret
    Galvan, E. Vano
    RADIOLOGIA, 2025, 67 (02): : 239 - 247