Artificial intelligence for the detection of sacroiliitis on magnetic resonance imaging in patients with axial spondyloarthritis

被引:9
|
作者
Lee, Seulkee [1 ]
Jeon, Uju [2 ]
Lee, Ji Hyun [3 ]
Kang, Seonyoung [1 ]
Kim, Hyungjin [1 ]
Lee, Jaejoon [1 ]
Chung, Myung Jin [2 ,4 ]
Cha, Hoon-Suk [1 ]
机构
[1] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Med, Seoul, South Korea
[2] Samsung Med Ctr, Med AI Res Ctr, Seoul, South Korea
[3] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Radiol, Seoul, South Korea
[4] Sungkyunkwan Univ, Sch Med, Dept Data Convergence & Future Med, Seoul, South Korea
来源
FRONTIERS IN IMMUNOLOGY | 2023年 / 14卷
基金
新加坡国家研究基金会;
关键词
axial spondyloarthritis; MRI; artificial intelligence; machine learning; sacroiliitis; ANKYLOSING-SPONDYLITIS; RADIOGRAPHS; DIAGNOSIS; MRI;
D O I
10.3389/fimmu.2023.1278247
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
BackgroundMagnetic resonance imaging (MRI) is important for the early detection of axial spondyloarthritis (axSpA). We developed an artificial intelligence (AI) model for detecting sacroiliitis in patients with axSpA using MRI.MethodsThis study included MRI examinations of patients who underwent semi-coronal MRI scans of the sacroiliac joints owing to chronic back pain with short tau inversion recovery (STIR) sequences between January 2010 and December 2021. Sacroiliitis was defined as a positive MRI finding according to the ASAS classification criteria for axSpA. We developed a two-stage framework. First, the Faster R-CNN network extracted regions of interest (ROIs) to localize the sacroiliac joints. Maximum intensity projection (MIP) of three consecutive slices was used to mimic the reading of two adjacent slices. Second, the VGG-19 network determined the presence of sacroiliitis in localized ROIs. We augmented the positive dataset six-fold. The sacroiliitis classification performance was measured using the sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC). The prediction models were evaluated using three-round three-fold cross-validation.ResultsA total of 296 participants with 4,746 MRI slices were included in the study. Sacroiliitis was identified in 864 MRI slices of 119 participants. The mean sensitivity, specificity, and AUROC for the detection of sacroiliitis were 0.725 (95% CI, 0.705-0.745), 0.936 (95% CI, 0.924-0.947), and 0.830 (95%CI, 0.792-0.868), respectively, at the image level and 0.947 (95% CI, 0.912-0.982), 0.691 (95% CI, 0.603-0.779), and 0.816 (95% CI, 0.776-0.856), respectively, at the patient level. In the original model, without using MIP and dataset augmentation, the mean sensitivity, specificity, and AUROC were 0.517 (95% CI, 0.493-0.780), 0.944 (95% CI, 0.933-0.955), and 0.731 (95% CI, 0.681-0.780), respectively, at the image level and 0.806 (95% CI, 0.729-0.883), 0.617 (95% CI, 0.523-0.711), and 0.711 (95% CI, 0.660-0.763), respectively, at the patient level. The performance was improved by MIP techniques and data augmentation.ConclusionAn AI model was developed for the detection of sacroiliitis using MRI, compatible with the ASAS criteria for axSpA, with the potential to aid MRI application in a wider clinical setting.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] ARTIFICIAL INTELLIGENCE FOR DETECTION OF INFLAMMATORY SACROILIITIS IN MAGNETIC RESONANCE IMAGING IN PATIENTS WITH AXIAL SPONDYLOARTHRITIS
    Lee, J.
    Kang, S. Y.
    Lee, S.
    Kim, H.
    Koh, E. M.
    Cha, H. S.
    ANNALS OF THE RHEUMATIC DISEASES, 2023, 82 : 1728 - 1728
  • [2] Impact of replacing radiographic sacroiliitis by magnetic resonance imaging structural lesions on the classification of patients with axial spondyloarthritis
    Bakker, Pauline A.
    van den Berg, Rosaline
    de Hooge, Manouk
    van Lunteren, Miranda
    Ez-Zaitouni, Zineb
    Fagerli, Karen M.
    Landewe, Robert
    van Oosterhout, Maikel
    Ramonda, Roberta
    Reijnierse, Monique
    van Gaalen, Floris A.
    van der Heijde, Desiree
    RHEUMATOLOGY, 2018, 57 (07) : 1186 - 1193
  • [3] Deep learning algorithms for magnetic resonance imaging of inflammatory sacroiliitis in axial spondyloarthritis
    Lin, Karina Ying Ying
    Peng, Cao
    Lee, Kam Ho
    Chan, Shirley Chiu Wai
    Chung, Ho Yin
    RHEUMATOLOGY, 2022, 61 (10) : 4198 - 4206
  • [4] Implementation of artificial intelligence models in magnetic resonance imaging with focus on diagnosis of rheumatoid arthritis and axial spondyloarthritis: narrative review
    Nicoara, Andreea-Iulia
    Sas, Lorena-Mihaela
    Bita, Cristina Elena
    Dinescu, Stefan Cristian
    Vreju, Florentin Ananu
    FRONTIERS IN MEDICINE, 2023, 10
  • [5] Artificial intelligence and machine learning in axial spondyloarthritis
    Adams, Lisa C.
    Bressem, Keno K.
    Poddubnyy, Denis
    CURRENT OPINION IN RHEUMATOLOGY, 2024, 36 (04) : 267 - 273
  • [6] Comparison between radiography and magnetic resonance imaging for the detection of sacroiliitis in the initial diagnosis of axial spondyloarthritis: a cost-effectiveness study
    Gorelik, Natalia
    Tamizuddin, Farah
    Rodrigues, Tatiane Cantarelli
    Beltran, Luis
    Malik, Fardina
    Reddy, Soumya
    Koo, James
    Subhas, Naveen
    Gyftopoulos, Soterios
    SKELETAL RADIOLOGY, 2020, 49 (10) : 1581 - 1588
  • [7] Interobserver Reliability of Magnetic Resonance Imaging of Sacroiliac Joints in Axial Spondyloarthritis
    Musetescu, Anca Emanuela
    Bobirca, Anca
    Gherghina, Florin Liviu
    Florescu, Alesandra
    Bobirca, Florin
    Ciurea, Paulina Lucia
    Criveanu, Cristina
    Musca, Alice
    Florescu, Lucian Mihai
    Gheonea, Ioana Andreea
    LIFE-BASEL, 2022, 12 (04):
  • [8] Fatty corner lesions in T1-weighted magnetic resonance imaging as an alternative to sacroiliitis for diagnosis of axial spondyloarthritis
    Chung, Ho Yin
    Yiu, Rachel Sze Wan
    Chan, Shirley Chiu Wai
    Lee, Kam Ho
    Lau, Chak Sing
    BMC RHEUMATOLOGY, 2019, 3 (01)
  • [9] Comparison between radiography and magnetic resonance imaging for the detection of sacroiliitis in the initial diagnosis of axial spondyloarthritis: a cost-effectiveness study
    Natalia Gorelik
    Farah Tamizuddin
    Tatiane Cantarelli Rodrigues
    Luis Beltran
    Fardina Malik
    Soumya Reddy
    James Koo
    Naveen Subhas
    Soterios Gyftopoulos
    Skeletal Radiology, 2020, 49 : 1581 - 1588
  • [10] Magnetic Resonance Imaging of Sacroiliitis in Patients with Spondyloarthritis: Correlation with Anatomy and Histology
    Hermann, K-G A.
    Bollow, M.
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2014, 186 (03): : 230 - 237