LARGE-SCALE FOREST HEIGHT MAPPING FROM TANDEM-X, ICESAT-2 AND LANDSAT 8 DATA USING A MACHINE-LEARNING METHOD

被引:0
作者
Hu, Huacan [1 ]
Fu, HaiQiang [1 ]
Zhu, JianJun [1 ]
Lopez-Sanchez, Juan M. [2 ]
Gomez, Cristina [3 ]
机构
[1] Cent South Univ, Sch Geosci & Infophys, Changsha, Peoples R China
[2] Univ Alicante, Inst Comp Res, Alicante, Spain
[3] Univ Valladolid, EiFAB iuFOR, Campus Soria, Soria, Spain
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
Forest height; machine learning; TanDEM-X; ICESat-2; Landsat; 8; large-scale mapping;
D O I
10.1109/IGARSS52108.2023.10283292
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Forest height is an indispensable parameter for natural resource investigations. Spaceborne Interferometric SAR (InSAR) has the sensitivity to measure forest height, especially TanDEM-X, which provides high-quality interferometric coherence without the effects of atmospheric delay and temporal decorrelation. In this paper, we seriously considered the limited penetrability of TanDEM-X InSAR, and proposed a two-step machine learning (ML) method to estimate large-scale forest height by combining TanDEM-X InSAR data, ICESat-2 data, and Landsat 8 data. The forest scattering phase center (SPC) height of InSAR is estimated by the first ML, and on this basis, the relationship between the SPC height and forest height is established by the second ML. We validated the effectiveness of proposed method in a Spanish Mediterranean climate forest region with airborne LiDAR data. As validated against LiDAR data, the accuracy of the estimated SPC height ranges from 2.07 m to 2.49 m, and the root mean square error (RMSE) of the average forest height ranges from 1.79 m to 2.93 m, at the resolution of four-hectare forest stands.
引用
收藏
页码:1764 / 1767
页数:4
相关论文
共 10 条
[1]  
Arozarena A., 2006, MAPPING INTER, P16
[2]   Forest Canopy Height Estimation Using Tandem-X Coherence Data [J].
Chen, Hao ;
Cloude, Shane R. ;
Goodenough, David G. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (07) :3177-3188
[3]  
Cloude S., 2009, Polarisation: Applications in Remote Sensing
[4]   Polarimetric SAR interferometry [J].
Cloude, SR ;
Papathanassiou, KP .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (05) :1551-1565
[5]   Monitoring and estimating tropical forest carbon stocks: making REDD a reality [J].
Gibbs, Holly K. ;
Brown, Sandra ;
Niles, John O. ;
Foley, Jonathan A. .
ENVIRONMENTAL RESEARCH LETTERS, 2007, 2 (04)
[6]   Canopy Height Estimation in Mediterranean Forests of Spain With TanDEM-X Data [J].
Gomez, Cristina ;
Lopez-Sanchez, Juan M. ;
Romero-Puig, Noelia ;
Zhu, Jianjun ;
Fu, Haiqiang ;
He, Wenjie ;
Xie, Yanzhou ;
Xie, Qinghua .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 :2956-2970
[7]   Operational TanDEM-X DEM calibration and first validation results [J].
Gruber, Astrid ;
Wessel, Birgit ;
Huber, Martin ;
Roth, Achim .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2012, 73 :39-49
[8]   CoastalDEM: A global coastal digital elevation model improved from SRTM using a neural network [J].
Kulp, Scott A. ;
Strauss, Benjamin H. .
REMOTE SENSING OF ENVIRONMENT, 2018, 206 :231-239
[9]   MAPPING FOREST CANOPY HEIGHT USING TANDEM-X DSM AND AIRBORNE LIDAR DTM [J].
Sadeghi, Yaser ;
St-Onge, Benoit ;
Leblon, Brigitte ;
Simard, Marc ;
Papathanassiou, Kostas .
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
[10]   Canopy height estimation with TanDEM-X in temperate and boreal forests [J].
Schlund, Michael ;
Magdon, Paul ;
Eaton, Brian ;
Aumann, Craig ;
Erasmi, Stefan .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 82