Fabrication of conductive structures in volumetric additive manufacturing through embedded 3-D printing for electronic applications

被引:8
作者
Wolstrup, Anders Frem [1 ]
Dagnaes-Hansen, Jonathan Thorbjorn [2 ]
Brandt, Oskar Vitus [2 ]
Meile, Daniel Helmuth [2 ]
Kruse, Carl Sander [2 ]
Spangenberg, Jon [2 ]
Zsurzsan, Tiberiu Gabriel [1 ]
机构
[1] Tech Univ Denmark DTU, Dept Elect & Photon Engn, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark DTU, Dept Civil & Mech Engn, DK-2800 Lyngby, Denmark
来源
ADDITIVE MANUFACTURING LETTERS | 2023年 / 7卷
关键词
Volumetric additive manufacturing; Embedded 3-D printing; Multi-material; Conductive structures; Electronic applications;
D O I
10.1016/j.addlet.2023.100178
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study investigates the fabrication of conductive structures for electronics applications using embedded 3D printing coupled with Volumetric Additive Manufacturing (VAM). Electrically conductive carbon grease was suspended within a resin matrix, and the samples underwent VAM printing and post-processing. The resulting three dimensional conductive structure was measured to have a resistance of 4.5 k omega, corresponding well with the material specifications. The results showed the importance of complete encapsulation of the conductive material within the resin to preserve the conductive structure. The resistivity of the conductive grease remained unaffected, indicating no interaction with the resin. Potential enhancements to improve the structure's fidelity and broaden its range of applications is discussed. This research highlights the potential of embedded 3-D printing for fabricating conductive structures in VAM. The fabrication method allows for unprecedented avenues in developing electronic applications, such as smart sensing, smart drug delivery and cyborganics.
引用
收藏
页数:5
相关论文
共 16 条
[1]   Digital manufacturing of personalised footwear with embedded sensors [J].
Binelli, Marco R. ;
van Dommelen, Ryan ;
Nagel, Yannick ;
Kim, Jaemin ;
Haque, Rubaiyet I. ;
Coulter, Fergal B. ;
Siqueira, Gilberto ;
Studart, Andre R. ;
Briand, Danick .
SCIENTIFIC REPORTS, 2023, 13 (01)
[2]   Classification of the emerging freeform three-dimensional printing technique [J].
Colly, Arthur ;
Marquette, Christophe ;
Frances, Jean-Marc ;
Courtial, Edwin-Joffrey .
MRS BULLETIN, 2023, 48 (01) :69-92
[3]   Viscoplastic Matrix Materials for Embedded 3D Printing [J].
Grosskopf, Abigail K. ;
Truby, Ryan L. ;
Kim, Hyoungsoo ;
Perazzo, Antonio ;
Lewis, Jennifer A. ;
Stone, Howard A. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (27) :23353-23361
[4]  
KELLY B., 2017, Computed Axial Lithography (CAL)_Toward single step 3D printing of Arbitrary geometries
[5]   Volumetric additive manufacturing via tomographic reconstruction [J].
Kelly, Brett E. ;
Bhattacharya, Indrasen ;
Heidari, Hossein ;
Shusteff, Maxim ;
Spadaccini, Christopher M. ;
Taylor, Hayden K. .
SCIENCE, 2019, 363 (6431) :1075-+
[6]   High-resolution tomographic volumetric additive manufacturing [J].
Loterie, Damien ;
Delrot, Paul ;
Moser, Christophe .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   Additive manufacturing frontier: 3D printing electronics [J].
Lu, Bingheng ;
Lan, Hongbo ;
Liu, Hongzhong .
OPTO-ELECTRONIC ADVANCES, 2018, 1 (01) :1-10
[8]   3D Printed structural electronics: embedding and connecting electronic components into freeform electronic devices [J].
Maalderink, Hessel H. H. ;
Bruning, Fabien B. J. ;
de Schipper, Mathijs M. R. ;
van der Werff, John J. J. ;
Germs, Wijnand W. C. ;
Remmers, Joris J. C. ;
Meinders, Erwin R. .
PLASTICS RUBBER AND COMPOSITES, 2018, 47 (01) :35-41
[9]   Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers [J].
Muth, Joseph T. ;
Vogt, Daniel M. ;
Truby, Ryan L. ;
Menguec, Yigit ;
Kolesky, David B. ;
Wood, Robert J. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2014, 26 (36) :6307-6312
[10]   Fused Deposition Modeling-Based 3D-Printed Electrical Interconnects and Circuits [J].
Nassar, Habib ;
Dahiya, Ravinder .
ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (12)