Self-triggered thermoelectric nanoheterojunction for cancer catalytic and immunotherapy

被引:54
作者
Yuan, Xue [1 ]
Kang, Yong [1 ]
Dong, Jinrui [1 ]
Li, Ruiyan [1 ]
Ye, Jiamin [1 ]
Fan, Yueyue [1 ]
Han, Jingwen [1 ]
Yu, Junhui [1 ]
Ni, Guangjian [1 ]
Ji, Xiaoyuan [1 ,2 ]
Ming, Dong [1 ]
机构
[1] Tianjin Univ, Acad Med Engn & Translat Med, Med Coll, Tianjin 300072, Peoples R China
[2] Linyi Univ, Med Coll, Linyi 276000, Peoples R China
基金
中国国家自然科学基金;
关键词
THERAPY; NANOPARTICLES; TOXICITY;
D O I
10.1038/s41467-023-40954-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The exogenous excitation requirement and electron-hole recombination are the key elements limiting the application of catalytic therapies. Here a tumor microenvironment (TME)-specific self-triggered thermoelectric nanoheterojunction (Bi0.5Sb1.5Te3/CaO2 nanosheets, BST/CaO2 NSs) with self-built-in electric field facilitated charge separation is fabricated. Upon exposure to TME, the CaO2 coating undergoes rapid hydrolysis, releasing Ca2+, H2O2, and heat. The resulting temperature difference on the BST NSs initiates a thermoelectric effect, driving reactive oxygen species production. H2O2 not only serves as a substrate supplement for ROS generation but also dysregulates Ca2+ channels, preventing Ca2+ efflux. This further exacerbates calcium overload-mediated therapy. Additionally, Ca2+ promotes DC maturation and tumor antigen presentation, facilitating immunotherapy. It is worth noting that the CaO2 NP coating hydrolyzes very slowly in normal cells, releasing Ca2+ and O-2 without causing any adverse effects. Tumor-specific self-triggered thermoelectric nanoheterojunction combined catalytic therapy, ion interference therapy, and immunotherapy exhibit excellent antitumor performance in female mice.
引用
收藏
页数:21
相关论文
共 67 条
[1]   Connecting Calcium-Based Nanomaterials and Cancer: From Diagnosis to Therapy [J].
Bai, Shuang ;
Lan, Yulu ;
Fu, Shiying ;
Cheng, Hongwei ;
Lu, Zhixiang ;
Liu, Gang .
NANO-MICRO LETTERS, 2022, 14 (01)
[2]   Pyroelectric materials and devices for energy harvesting applications [J].
Bowen, C. R. ;
Taylor, J. ;
LeBoulbar, E. ;
Zabek, D. ;
Chauhan, A. ;
Vaish, R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (12) :3836-3856
[3]   Piezoelectric and ferroelectric materials and structures for energy harvesting applications [J].
Bowen, C. R. ;
Kim, H. A. ;
Weaver, P. M. ;
Dunn, S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :25-44
[4]   Piezoelectric Nanomaterials Activated by Ultrasound: The Pathway from Discovery to Future Clinical Adoption [J].
Cafarelli, Andrea ;
Marino, Attilio ;
Vannozzi, Lorenzo ;
Puigmarti-Luis, Josep ;
Pane, Salvador ;
Ciofani, Gianni ;
Ricotti, Leonardo .
ACS NANO, 2021, 15 (07) :11066-11086
[5]   Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment [J].
Chen, Binlong ;
Dai, Wenbing ;
He, Bing ;
Zhang, Hua ;
Wang, Xueqing ;
Wang, Yiguang ;
Zhang, Qiang .
THERANOSTICS, 2017, 7 (03) :538-558
[6]   Advances in nanomaterials for photodynamic therapy applications: Status and challenges [J].
Chen, Jianming ;
Fan, Taojian ;
Xie, Zhongjian ;
Zeng, Qiqiao ;
Xue, Ping ;
Zheng, Tingting ;
Chen, Yun ;
Luo, Xiaoling ;
Zhang, Han .
BIOMATERIALS, 2020, 237
[7]   Edge modification facilitated heterogenization and exfoliation of two-dimensional nanomaterials for cancer catalytic therapy [J].
Chen, Liqun ;
Mao, Zhuo ;
Wang, Yang ;
Kang, Yong ;
Wang, Ying ;
Mei, Lin ;
Ji, Xiaoyuan .
SCIENCE ADVANCES, 2022, 8 (39)
[8]   The role of ROS in tumour development and progression [J].
Cheung, Eric C. ;
Vousden, Karen H. .
NATURE REVIEWS CANCER, 2022, 22 (05) :280-297
[9]   Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment [J].
Dai, Yunlu ;
Xu, Can ;
Sun, Xiaolian ;
Chen, Xiaoyuan .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (12) :3830-3852
[10]   Solutions to the Drawbacks of Photothermal and Photodynamic Cancer Therapy [J].
Deng, Xiangyu ;
Shao, Zengwu ;
Zhao, Yanli .
ADVANCED SCIENCE, 2021, 8 (03)