Visualization of molecular stacking using low-energy electron microscopy

被引:4
作者
Prochazka, Pavel [1 ]
Cechal, Jan [1 ,2 ]
机构
[1] Brno Univ Technol, Cent European Inst Technol, CEITEC, Purkynova 123, Brno 61200, Czech Republic
[2] Brno Univ Technol, Inst Phys Engn, Technicka 2896-2, Brno 61669, Czech Republic
关键词
Low-energy electron microscopy; Self-assembly; Dark-field contrast; Layer stacking; ACID;
D O I
10.1016/j.ultramic.2023.113799
中图分类号
TH742 [显微镜];
学科分类号
摘要
The design of metal-organic interfaces with atomic precision enables the fabrication of highly efficient devices with tailored functionality. The possibility of fast and reliable analysis of molecular stacking order at the interface is of crucial importance, as the interfacial stacking order of molecules directly influences the quality and functionality of fabricated organic-based devices. Dark-field (DF) imaging using Low-Energy Electron Microscopy (LEEM) allows the visualization of areas with a specific structure or symmetry. However, distinguishing layers with different stacking orders featuring the same diffraction patterns becomes more complicated. Here we show that the top layer shift in organic molecular bilayers induces measurable differences in spot intensities of respective diffraction patterns that can be visualized in DF images. Scanning Tunneling Microscopy (STM) imaging of molecular bilayers allowed us to measure the shift directly and compare it with the diffraction data. We also provide a conceptual diffraction model based on the electron path differences, which qualitatively explains the observed phenomenon.
引用
收藏
页数:6
相关论文
共 35 条
[1]   Trends in low energy electron microscopy [J].
Altman, M. S. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (08)
[2]   LOW-ENERGY-ELECTRON MICROSCOPY [J].
BAUER, E .
REPORTS ON PROGRESS IN PHYSICS, 1994, 57 (09) :895-938
[4]   Convergent and divergent two-dimensional coordination networks formed through substrate-activated or quenched alkynyl ligation [J].
Cechal, Jan ;
Kley, Christopher S. ;
Kumagai, Takashi ;
Schramm, Frank ;
Ruben, Mario ;
Stepanow, Sebastian ;
Kern, Klaus .
CHEMICAL COMMUNICATIONS, 2014, 50 (69) :9973-9976
[5]   Surface structure of bulk 2H-MoS2(0001) and exfoliated suspended monolayer MoS2: A selected area low energy electron diffraction study [J].
Dai, Zhongwei ;
Jin, Wencan ;
Grady, Maxwell ;
Sadowski, Jerzy T. ;
Dadap, Jerry I. ;
Osgood, Richard M., Jr. ;
Pohl, Karsten .
SURFACE SCIENCE, 2017, 660 :16-21
[6]   Intrinsic stacking domains in graphene on silicon carbide: A pathway for intercalation [J].
de Jong, T. A. ;
Krasovskii, E. E. ;
Ott, C. ;
Tromp, R. M. ;
van der Molen, S. J. ;
Jobst, J. .
PHYSICAL REVIEW MATERIALS, 2018, 2 (10)
[7]   Determining the structure of Ru(0001) from low-energy electron diffraction of a single terrace [J].
de la Figuera, J. ;
Puerta, J. M. ;
Cerda, J. I. ;
El Gabaly, F. ;
McCarty, K. F. .
SURFACE SCIENCE, 2006, 600 (09) :L105-L109
[8]   Self-assembly of metal-organic coordination structures on surfaces [J].
Dong, Lei ;
Gao, Zi'Ang ;
Lin, Nian .
PROGRESS IN SURFACE SCIENCE, 2016, 91 (03) :101-135
[9]   The importance of threading dislocations on the motion of domain boundaries in thin films [J].
El Gabaly, F ;
Ling, WLW ;
McCarty, KF ;
de la Figuera, J .
SCIENCE, 2005, 308 (5726) :1303-1305
[10]   Step-edge assisted large scale FeSe monolayer growth on epitaxial Bi2Se3thin films [J].
Fikacek, J. ;
Prochazka, P. ;
Stetsovych, V ;
Prusa, S. ;
Vondracek, M. ;
Kormos, L. ;
Skala, T. ;
Vlaic, P. ;
Caha, O. ;
Carva, K. ;
Cechal, J. ;
Springholz, G. ;
Honolka, J. .
NEW JOURNAL OF PHYSICS, 2020, 22 (07)