Diffraction efficiency of a generalized complex binary grating

被引:2
作者
Amaya, D. [1 ,3 ]
Rueda, E. [2 ]
Vaveliuk, P. [1 ,4 ]
机构
[1] Ctr Invest Opt CIOp, La Plata, Argentina
[2] Univ Antioquia, U A, Grp Opt & Foton, Inst Fis, Calle 70 52-21, Medellin, Colombia
[3] Univ Nacl La Plata, UNLP, Fac Ingn, Dept Ciencias Basicas, Calle 1 & 47, La Plata, Argentina
[4] Univ Nacl Arturo Jauretche UNAJ, Inst Ingn & Agron, Av Calchaqui 1880, Florencio Varela, Argentina
来源
OPTICA PURA Y APLICADA | 2023年 / 56卷 / 02期
关键词
Diffraction efficiency; binary gratings; Ronchi gratings; AMPLITUDE;
D O I
10.7149/OPA.56.2.51129
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A generalized complex binary grating is a type of grating that permits control of four degrees of freedom: the two steps amplitudes that form the period, their relative phase and their widths' ratio. In this work, using the Fourier formalism, we derive an analytical expression for the diffraction efficiency of all the grating diffraction orders. The analytical expression depends on the four degrees of freedom. Our model agrees with the results reported in the literature for the special cases of phase-only and amplitude-only Ronchi gratings and some particular extensions. In addition, we study situations where the amplitudes and widths of the grating steps differ. In particular, for a grating with a relative phase difference of & pi; radians, normalized steps amplitudes of 1 and 0.77, and width's ratios of 0.5 and 0.25, our experimental results validate the values predicted by our model. The model developed in this work will be valuable in designing high-precision diffractive gratings for particular specifications. In addition, it can be used to characterize spatial amplitude, phase and complex-amplitude modulators.
引用
收藏
页数:10
相关论文
共 21 条
  • [1] Least squares method for liquid crystal display characterization
    Amaya, Dafne
    Actis, Daniel
    Rumi, Gonzalo
    Lencina, Alberto
    [J]. APPLIED OPTICS, 2017, 56 (05) : 1438 - 1446
  • [2] Exploiting a transmission grating spectrometer
    Bell, RE
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (10) : 4158 - 4161
  • [3] The Mid-Infrared Instrument for the James Webb Space Telescope, V: Predicted Performance of the MIRI Coronagraphs
    Boccaletti, A.
    Lagage, P-O.
    Baudoz, P.
    Beichman, C.
    Bouchet, P.
    Cavarroc, C.
    Dubreuil, D.
    Glasse, Alistair
    Glauser, A. M.
    Hines, D. C.
    Lajoie, C-P.
    Lebreton, J.
    Perrin, M. D.
    Pueyo, L.
    Reess, J. M.
    Rieke, G. H.
    Ronayette, S.
    Rouan, D.
    Soummer, R.
    Wright, G. S.
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2015, 127 (953) : 633 - 645
  • [4] Born M., 1980, Principles of Optics
  • [5] Speckle fields generated with binary diffusers and synthetic pupils implemented on a spatial light modulator
    Cabezas, L.
    Amaya, D.
    Bolognini, N.
    Lencina, A.
    [J]. APPLIED OPTICS, 2015, 54 (18) : 5691 - 5696
  • [6] One dimensional speckle fields generated by three phase level diffusers
    Cabezas, L.
    Amaya, D.
    Bolognini, N.
    Lencina, A.
    [J]. JOURNAL OF OPTICS, 2015, 17 (02)
  • [7] Reflective arrayed waveguide grating multiplexer
    de Peralta, LG
    Bernussi, AA
    Frisbie, S
    Gale, R
    Temkin, H
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2003, 15 (10) : 1398 - 1400
  • [8] Loewen E. G., 2018, Diffraction gratings and applications
  • [9] Germanium-on-Silicon Mid-Infrared Arrayed Waveguide Grating Multiplexers
    Malik, Aditya
    Muneeb, Muhammad
    Pathak, Shibnath
    Shimura, Yosuke
    Van Campenhout, Joris
    Loo, Roger
    Roelkens, Gunther
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2013, 25 (18) : 1805 - 1808
  • [10] Mansuripur M., 2009, CLASS OPT ITS APPL, P614