Traveling-wave solutions for a nonlinear non-Ohmic cardioelectrophysiological tissue conduction cable equation

被引:2
|
作者
Ghazanfar, Sidra [1 ]
Macias-Diaz, Jorge E. E. [2 ,3 ]
Sajid Iqbal, Muhammad [4 ]
Ahmed, Nauman [1 ,5 ]
机构
[1] Univ Lahore, Dept Math & Stat, Lahore, Pakistan
[2] Univ Autonoma Aguascalientes, Dept Matemat & Fis, Aguascalientes, Mexico
[3] Tallinn Univ, Sch Digital Technol, Dept Math & Didact Math, Tallinn, Estonia
[4] Natl Univ Sci & Technol, Dept Humanities & Basic Sci, Islamabad, Pakistan
[5] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
关键词
existence and uniqueness of solutions; non-Ohmic tissue conduction; Schauder's fixed-point; theorem; solitary wave solutions; traveling-wave solutions; expansionexp(-phi(xi))-expansion method; SOLITONS;
D O I
10.1002/mma.9205
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, families of solitary waves solutions of a general third-order nonlinear non-Ohmic cable equation in cardio-electro-physiology are obtained using the exp(-phi(xi))-expansion method. In this equation, the unknown function represents the trans-membrane current, and the exact soliton-like solutions are thoroughly derived using this analytic technique, and illustrated through surface and contour plots. To support the analytical findings presented in this work, the existence of solution and their optimal regularity is proved rigorously using Shauder's fixed-point theorem.
引用
收藏
页码:12690 / 12710
页数:21
相关论文
共 50 条
  • [31] Abundant traveling wave solutions to the resonant nonlinear Schrodinger's equation with variable coefficients
    Rezazadeh, Hadi
    Tariq, Kalim U.
    Sabi'u, Jamilu
    Bekir, Ahmet
    MODERN PHYSICS LETTERS B, 2020, 34 (12):
  • [32] Bifurcations and traveling wave solutions for a fourth-order integrable nonlinear Schrodinger equation
    Liu, Minghuan
    Zheng, Yuanguang
    OPTIK, 2022, 255
  • [33] New traveling wave solutions of the perturbed nonlinear Schrodingers equation in the left-handed metamaterials
    Houwe, Alphonse
    Justin, Mibaile
    Doka, Serge Y.
    Crepin, Kofane Timoleon
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (01)
  • [34] Lie Point Symmetries, Traveling Wave Solutions and Conservation Laws of a Non-linear Viscoelastic Wave Equation
    Marquez, Almudena P.
    Bruzon, Maria S.
    MATHEMATICS, 2021, 9 (17)
  • [35] Exact Traveling Wave Solutions of Nonlinear PDEs in Mathematical Physics Using the Modified Simple Equation Method
    Zayed, E. M. E.
    Arnous, A. H.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2013, 8 (02): : 553 - 572
  • [36] Exact traveling wave solutions for resonance nonlinear Schrodinger equation with intermodal dispersions and the Kerr law nonlinearity
    Srivastava, Hari M.
    Gunerhan, Hatira
    Ghanbari, Behzad
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 7210 - 7221
  • [37] Exact traveling wave solutions of perturbed nonlinear Schrodinger's equation (NLSE) with Kerr law nonlinearity
    Ozgul, Semiha
    Turan, Meltem
    Yildirim, Ahmet
    OPTIK, 2012, 123 (24): : 2250 - 2253
  • [38] Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrodinger's equation with Kerr law nonlinearity
    Zhang, Zai-yun
    Liu, Zhen-hai
    Miao, Xiu-jin
    Chen, Yue-zhong
    PHYSICS LETTERS A, 2011, 375 (10) : 1275 - 1280
  • [39] Sine-Gordon Equation in (1+2) and (1+3) dimensions: Existence and Classification of Traveling-Wave Solutions
    Zarmi, Yair
    PLOS ONE, 2015, 10 (05):
  • [40] Long-period limit of exact periodic traveling wave solutions for the derivative nonlinear Schrodinger equation
    Hayashi, Masayuki
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (05): : 1331 - 1360